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Linearized Riccati Equation as a Tool for Nonlinear Optics
of Weakly Excited Two-Level Systems
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Linearized version of the Riccati-type differential equation for the ratio of population amplitudes in a laser-

driven two-level system is used to calculate analytically the induced electric dipole moment. The formula found for
the dipole moment is valid for weak excitations by smooth-shape pulses of arbitrary off-resonant frequencies, i.e.,
those producing neither exact one-photon nor odd multiphoton resonances. For a given pulse shape, the formula
allows to express the Fourier components of the induced dipole moment as functions of both laser frequency and
intensity and to find the field-dependent refractive index of the system versus laser frequency.
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1. Introduction

The model of two discrete levels is known [1] to serve as
the most popular paradigm for different phenomena from
the scope of light–matter interaction. Despite its simplic-
ity, the model gives deep understanding of both resonant
and off-resonant processes because it can be solved ana-
lytically in an approximate way even if no rotating wave
approximation is made. In the last 25 years, this two-
level model has been extensively used in, e.g. theoretical
investigation of the role played by bound–bound transi-
tions in generation of high harmonics of light from the
matter exposed to linearly polarized laser field [2–21].
Generation of harmonics of a given light beam is a key
phenomenon in nonlinear optics because this process is a
source of new radiation of often much higher frequency
than that of the primary beam. Such new radiation is re-
quired for experimental spectroscopy, for example. In the
investigation mentioned, both the regimes of weak exci-
tations [5, 9, 19] and strong excitations [3, 5, 8, 17, 19]
were considered. For both regimes the main aim of the
papers cited above was to calculate the induced electric
dipole moment in order to analyse the photon-emission
spectrum of the system. To name a few, we point to
some approaches used in the calculations, e.g. the op-
tical Bloch equations [2, 7, 8, 12, 17, 21], the appropri-
ately transformed equations for the level population am-
plitudes [3, 9, 11], the Mathieu-type differential equation
for the amplitudes [5], the Floquet–Green formalism [18]
and the Riccati-type equation for the ratio of the popu-
lation amplitudes [19, 20].

The present paper is a significant extension of Sect. 4.1
of our previous paper [19], where weakly excited two-level
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model was solved analytically by applying the Riccati-
type differential equation for population amplitudes, but
under two restrictive approximations, i.e., the approxi-
mation of square temporal profile of the laser pulse and
the approximation of low laser frequency. The first ap-
proximation idealized the real laser pulse, completely ne-
glecting its finite turn-on and turn-off times, while the
other assumed the laser frequency to be much lower than
the transition frequency (the so-called multiphoton exci-
tation regime). Due to these restrictions the applicability
of our previous solution was strongly limited.

Now, we take into consideration both smooth tempo-
ral profile of the laser pulse and arbitrary frequency of
light. Mathematically, it is much more challenging task.
Nevertheless, we shall find an analytical solution cover-
ing much broader scope of applicability than previously.
As we are interested in the regime of weak excitations
too, we shall solve the so-called linearized form of the
exact Riccati-type differential equation and then use this
solution to derive an analytical formula for the induced
electric dipole moment. Particular forms of the formula
for the dipole moment will be obtained corresponding to
different laser frequency and laser strength limits. Also,
amplitudes of harmonics generated and field-dependent
refractive index of the system will be discussed as func-
tions of laser frequency.

2. Riccati equation and its linearization

For a two-level system in a laser field, the Riccati-type
equation is that for the ratio R = C2/C1. Here, C1 and
C2 are the time-dependent population amplitudes of the
two opposite-parity field-free states, i.e., the lower state
1 (initially occupied) and the upper state 2 (initially
empty), respectively. This differential equation is of the
form [19, 22]:

iṘ = Q(t)R2 −Q∗(t), (1)
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and results from the pair of equations for the state-
population amplitudes [23]:

iĊ1 = −Q(t)C2, (2)

iĊ2 = −Q∗(t)C1, (3)
where the dots over R and Cj stand for the time deriva-
tives. In the electric dipole approximation for the inter-
action Hamiltonian but without employing the rotating
wave approximation,

Q(t) = ΩRf(t) cos (ω0t) e
− iω21t (4)

with ω21 = ω2 − ω1 being the transition frequency, the
laser-field frequency ω0, the smooth envelope of the laser
pulse 0 ≤ f(t) ≤ 1, and the standard Rabi frequency
ΩR = µ21 · ε0/~ expressed by the dipole transition ma-
trix element µ21 = 〈2| er |1〉 and the amplitude ε0 of the
electric field of the linearly polarized beam.

The variable R from (1) gives complete information
about the population evolutions, |C1|2 and |C2|2, and the
induced electric dipole moment d(t) = 〈Ψ(t) |er|Ψ(t)〉,
where Ψ(t) = C1 exp (− iω1t) |〉+C2 exp (− iω2t) |〉 is the
state vector of the laser-driven two-level system. In terms
of R, the state populations and the induced dipole mo-
ment are expressed as

|C1|2 =
1

1 + |R|2
, (5)

|C2|2 =
|R|2

1 + |R|2
, (6)

d(t) = 2µ12Re
(
C1C

∗
2 e

iω21t
)
= 2µ12

Re
(
Re− iω21t

)
1 + |R|2

,

(7)
where we made use of the conservation law for the total
population probability, |C1|2 + |C2|2 = 1.

Throughout this paper we focus on weak excitations,
|C2|2 � 1, meaning |R|2 � 1. In this case, the term
quadratic in R in (1) is much smaller than the other term
on the right-hand side and we can use the approximate
procedure proposed in [19]. In short, we initially drop
out this quadratic term and start from the zero-order so-
lution to (1):

R0(t) = i

t∫
t0

Q∗(t′)dt′. (8)

Then, the R2 term is included by the substitution
R = R0 +R1 with the restriction that |R1| � |R0|. This
two-part R, when substituted to (1), gives a different
Riccati-type equation but for R1 now. However, reject-
ing the smallestR2

1 term in the equation forR1, we reduce
this nonlinear equation to the linear first order differen-
tial equation

iṘ1 = 2QR0R1 +QR2
0. (9)

As distinct from Eq. (1), Eq. (9) has the exact solution

R1(t) = −
1

2

t∫
t0

R0 (t
′)

dZ (t, t′)

dt′
dt′, (10)

where

Z (t, t′) = exp

2

t∫
t′

Ṙ∗0(t
′′)R0(t

′′)dt′′

 . (11)

The above solution for R1 can be expressed in
a slightly different form using the relations Ṙ0 = iQ∗ and
Ṙ∗0 = − iQ. Equations (8) and (10) give a formal solution
R = R0 +R1 to (1) in the case of weak excitations. The
procedure leading to such a solution is called the lin-
earization of the starting Eq. (1).

In [22], Rostovtsev et al. have presented an alter-
native linearization procedure to the above one. In
their approach, the R2 term in (1) was replaced by
R2 = (R−R0)

2
+ 2R0R−R2

0 ≈ 2RR0 −R2
0. However,

by putting R = R0+R1 one converts such approximated
Eq. (1) for R into our Eq. (9) for R1. It means that the
two linearization procedures [19, 22] of Eq. (1) are equiv-
alent. Rostovtsev et al. have shown numerically that
this linearization procedure gives accurate results for the
excitation probability.

3. Calculation of R1(t)

The integrals over time in (8), (10) and (11) can be cal-
culated analytically for an arbitrary smooth-shape func-
tion f(t), but in an approximate way. To this end,
we make use of the two properties of f(t), i.e., it is
zero at the initial time t0 and is, together with its pow-
ers, the slowest function as compared to the other time-
dependent functions in integrands when no exact odd-
photon resonances occur in the system. Assuming the
lack of such resonances, we perform the integrals by parts
and neglect the emerging integrals including the time
derivatives of both f and higher powers of f .

Beyond one-photon resonance, i.e., for ω0 6= ω21,
Eq. (8) for R0 gives along this line

R0(t) =
x

y2 − 1
f(t)e iω21t

[
y cos (ω0t)− i sin (ω0t)

]
,

(12)
where x = ΩR/ω0 and y = ω21/ω0 are dimension-
less field-strength and field-frequency parameters, respec-
tively. According to the applied linearization procedure,
it has to be |R0|2 � 1 entailing the limitation

x2 � f1(y) = 2

(
y2 − 1

)2
y2 + 1

, (13)

where we have replaced cos2 (ω0t) and sin2 (ω0t) by
their time average values and f2(t) by its maximum
value. In the limiting case of low laser frequencies
(y � 1, multiphoton excitation) Eq. (13) leads to
(x/y)

2 � 2, while for high laser frequencies (y � 1)
to x2 � 2. For other laser frequencies, fixed in y, the
strength parameter x fulfilling Eq. (13) can be estimated
from Fig. 1 (solid line).

Using (12) for R0 and Ṙ∗0 = − iQ, we find that the
exponent in Z (t, t′) of (11) is
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Fig. 1. The functions f1 (y), f2 (y) and f3 (y) given by
Eqs. (13), (30), and (31), respectively, in their depen-
dence on the laser frequency parameter y = ω21/ω0,
where ω21 is the transition frequency and ω0 — the laser
frequency.

2

t∫
t′

Ṙ∗0(t
′′)R0(t

′′)dt′′ = i (U(t′)− U(t)) , (14)

where

U(t′) = a

∫
f2(t′)dt′ + bf2(t′) sin (2ω0t

′)

+icf2(t′) cos (2ω0t
′) (15)

with

a = x2
y

y2 − 1
ω0, b =

a

2ω0
, c =

b

y
=

a

2ω21
. (16)

We recognize in a the standard Stark shift of the tran-
sition frequency, while b (c) is the ratio of this shift to
double laser (transition) frequency. Due to (14), we have
Z (t, t′) = exp (i (U(t′)− U(t))) and

dZ (t, t′)

dt′
= (17)

iaf2(t′)

(
1 + cos (2ω0t

′)− i

y
sin (2ω0t

′)

)
Z (t, t′)

after neglecting the minor contribution coming from
d
(
f2(t′)

)
/dt′. As a result, the integrand in (10) is

R0 (t
′)

dZ (t, t′)

dt′
=
i

2

x3yω0

(y2 − 1)
2 f

3 (t′) e iω21t
′
Z (t, t′)

×
[(

3

2
y − 1

2y
− 1

)
e iω0t

′
+

(
3

2
y − 1

2y
+1

)
e− iω0t

′

+

(
1

2
y+

1

2y
− 1

)
e i 3ω0t

′
+

(
1

2
y+

1

2y
+1

)
e− i 3ω0t

′
]
.

(18)
Then, we apply to Z (t, t′) the Fourier–Bessel expan-
sions [24, 25]:

e iq sin(ϕ) =

∞∑
n=−∞

Jn(q)e
inϕ, (19)

eq cos(ϕ) =

∞∑
n=−∞

In(q)e
inϕ, (20)

where n runs all positive and negative integers, Jn(q) is
the first kind Bessel function, and In(q) is the modified
Bessel function. For positive n, the Bessel function is
represented by the series

Jn(q) =

∞∑
k=0

(−1)k
(
q
2

)n+2k

k! (n+ k)!
, (21)

while the series for In(q) is obtained from the above
one by removing the factor (−1)n. For negative n,
one needs to use the relations J−n(q) = (−1)n Jn(q)
and I−n(q) = In(q). After applying these expan-
sions to Z (t, t′), we shift appropriately the summa-
tion indices in (18) to obtain the common function
exp

(
i (ω21 + (2n+ 2m+ 1)ω0) t

′ + a
∫
f2(t′)dt′

)
for all

terms. Then, we assume the lack of any higher-
order odd-photon resonance in the system (ω21 6= Nω0

with N being positive odd number) and such de-
tuning from this resonance that the Stark shift
|a| � |(ω21 + (2n+ 2m+ 1)ω0)|. As a consequence, we
can integrate Eq. (18) over t′, in order to obtain R1 from
Eq. (10), using the procedure described at the beginning
of Sect. 3. As a result we obtain

R1(t) = −
f3(t)

4

x3y

(y2 − 1)
2

×
∞∑

n,m,n′,m′=−∞

An
′,m′

n,m

y + 2(n+m) + 1
(22)

× exp
(
iω21t+ i(2n+ 2m− 2n′ + 2m′ + 1)ω0t

)
,

where
An

′,m′

n,m = (−1)mJn′
(
bf2(t)

)
Im
(
cf2(t)

)
Im′

(
cf2(t)

)
×
[(

y

2
+

1

2y
− 1

)
Jn−1

(
bf2(t)

)
+

(
3y

2
− 1

2y
− 1

)
Jn
(
bf2(t)

)
+

(
3y

2
− 1

2y
+ 1

)
Jn+1

(
bf2(t)

)
+

(
y

2
+

1

2y
+ 1

)
Jn+2

(
bf2(t)

)]
(23)

and y + 2(n+m) + 1 needs to be non-zero.

4. Representative results

4.1. General formula for the dipole moment

We use the approximate solution R(t) = R0(t)+R1(t)
to Eq. (1), with R0(t) given by (12) and R1(t) by (22),
to write Eq. (7) for the induced electric dipole moment
as d(t) = d0(t)+d1(t)

1+|R|2 , where
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d0(t) = 2µ12Re
(
R0(t)e

− iω21t
)
=

2µ12
xy

y2 − 1
f(t) cos (ω0t) (24)

and

d1(t) = 2µ12Re
(
R1 (t) e

− iω21t
)
= −µ12f

3(t)

2

x3y

(y2 − 1)
2

×
∞∑

n,m,n′,m′=−∞
An

′,m′

n,m

cos ((2 (n+m− n′ +m′) + 1)ω0t)

y + 2 (n+m) + 1
.

(25)
Since |R|2 � 1 for weak excitations, the dipole moment
is (to the first approximation) determined by the sum of
Eqs. (24) and (25) only. The part d0(t), coming from
R0, is known from the standard first-order perturbation
theory when this theory is applied to (2) and (3) for the
population amplitudes C1 and C2. The other part, d1(t),
comes from our R1 (Eq. (22)) obtained by solving an-
alytically the Riccati-type Eq. (1) with the use of the
linearization procedure. Part d1 (t) describes the genera-
tion of odd-order laser harmonics by the two-level system.
The present d1(t) covers the case of a smooth pulse, f(t),
of arbitrary frequency, ω0, and thus broadens substan-
tially the earlier results, ([19], part 4.1) and ([5(b), part
II), obtained along different lines for the square pulse of
low frequency (y � 1) only. We mention that the coef-
ficients An

′,m′

n,m include the Bessel functions of arguments
dependent on x = ΩR/ω0, where ΩR = µ21 · ε0/}, thus
each frequency component of d1(t) depends on a series
of different powers of both the electric field ε0 and the
transition dipole µ21.

4.2. Particular limits of d1(t)
In different (physically essential) limits (25) takes

much simpler forms.
4.2.1. Case y � 1

First, we consider the case of low laser frequen-
cies (ω0 � ω21, y � 1). In this case, the parameter b
from (16) converts into b′ = y

2 (x/y)
2, while c into

c′ = 1
2 (x/y)

2. For y � 1, we however have the restric-
tion (x/y)

2 � 2 resulting from the zero-order solution
R0 (see (12) and (13)). Thus, we always have c′ � 1.
It means that the two generalized Bessel functions Iν in
(23) are very close to 1 for m = m′ = 0 and are very
close to zero for other indices m and m′. We are, thus,
allowed to make the approximations Im

(
c′f2(t)

)
= δm,0

and Im′
(
c′f2(t)

)
= δm′,0, where δα,β is the Kronecker

symbol. For y � 1, it is also justified to retain only the
leading term, linear in y, in the coefficients at the Bessel
functions Jν in (23). In the limit of y � 1, Eq. (25) for
d1(t) is thus reduced to

d1(t)
y�1
= −µ12

4

(
x

y

)3

f3 (t)

×
∞∑

n,n′=−∞
Bn

′

n

cos
(
(2 (n− n′) + 1)ω0t

)
1 + 2n+1

y

, (26)

where
Bn

′

n = 3
[
Jn
(
b′f2(t)

)
+ Jn+1

(
b′f2(t)

) ]
Jn′
(
b′f2(t)

)
+
[
Jn−1

(
b′f2(t)

)
+ Jn+2

(
b′f2(t)

) ]
Jn′
(
b′f2(t)

)
.

(27)
If b′ � 1, the coefficient Bn

′

n can be further simplified by
retaining only the leading term in the series representa-
tion of a given Bessel function Jν

(
b′f2(t)

)
. One can see

that, for a reasonable y ≈ 10, the parameter b′ remains
much smaller than 1 even for x as large as 1, i.e., for
nominally strong fields.

4.2.2. Case y � 1

In the opposite case of high laser frequencies
(ω0 � ω21, y � 1), the parameters b and c convert
into b′′ = −x2y/2 and c′′ = b′′/y = −x2/2, respectively.
Both |b′′| and |c′′| are much smaller than 1 because the
applicability condition for the zero-order solution R0

requires x2 � 2 when y � 1 (see (12) and (13)). Now,
1/y becomes the dominant term in the coefficients at
the Bessel functions Jν in (23). With only this term
retained, Eq. (25) for d1(t) transforms, for y � 1, into
the simpler form

d1(t)
y�1
= −µ12

4
x3f3(t)

×
∞∑

n,m,n′,m′=−∞
Cn

′,m′

n,m

cos ((2 (n+m− n′ +m′) + 1)ω0t)

y + 2 (n+m) + 1
,

(28)
where
Cn

′,m′

n,m = (−1)mJn′
(
b′′f2(t)

)
Im
(
c′′f2(t)

)
Im′

(
c′′f2(t)

)
×
[
Jn−1

(
b′′f2(t)

)
− Jn

(
b′′f2(t)

)
−Jn+1

(
b′′f2(t)

)
+ Jn+2

(
b′′f2(t)

) ]
. (29)

4.2.3. Case y = 0

Equations (28) and (29) cover the limiting case of
the degenerate two-level system (ω21 = 0, y = 0). In this
case, b′′ = 0, and c′′ still keeps a small non-zero
value −x2/2. Thus, each Bessel function Jν in (29)
behaves like the Kronecker symbol and the coefficient
Cn

′,m′

n,m is made proportional to (δn,1 − δn,0 − δn,−1 +
δn,−2)δn′,0. When performing the summation over n and
n′, as required by (28), we find that the contributions
from δn,1 and δn,−2 cancel mutually, since Iν = I−ν , and
the same concerns the contributions from δn,0 and δn,−1.
As a result, d1(t) from (28) becomes zero for y = 0. Con-
sequently, no dipole moment is induced in the degenerate
two-level system since d0(t) given by Eq. (24) is also zero
when y = 0. This conclusion is consistent with the gen-
eral outcome of the exact Riccati Eq. (1) for ω21 = 0. In
the limit ω21 = 0, the coupling parameter Q(t) given by
(4) is made real and Eq. (1) has the exact solution
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R(t) = i tan

 t∫
t0

Q (t′) dt′


for any Q(t). As purely imaginary for ω21 = 0, this solu-
tion produces no induced dipole moment from (7).

4.2.4. Arbitrary y but both |b| � 1 and |c| � 1

Now, we focus on the case of arbitrary laser frequen-
cies (y) but such field strengths (x) that both |b| � 1
and |c| � 1. Then, each Bessel function Jν and each
modified Bessel function Iν in (23) for An

′,m′

n,m can be ap-
proximated by the first term in its series representation
(see (21)). Moreover, we are also allowed to retain in (23)
only what results from the Bessel function Jν of the low-
est order |ν|. Due to (16), these approximations should
work well when the parameters x and y fulfil the set of
two inequalities

x2 � f2(t) = 2

∣∣y2 − 1
∣∣

y
, (30)

x2 � f3(t) = 2
∣∣y2 − 1

∣∣ . (31)
In Fig. 1, we present the functions f2 (dash line) and
f3 (dot line) versus y and compare them with the func-
tion f1 (solid line) defined by (13) and imposing addi-
tional restriction on x2. These three restrictions, namely
Eqs. (13), (30), and (31), have to be reconciled simul-
taneously. Thus, for a given y, the strength parameter
x needs to be chosen as that satisfying the inequality
x2 � min (f1 (y) , f2 (y) , f3 (y)), where min (f1, f2, f3)
means the smallest function of the three ones. Figure 1
can be helpful in quick estimation of the related parame-
ters x and y for which one can apply the above described
approximations.

With the coefficients An
′,m′

n,m approximated in this
way, we are able to find in compact forms the compo-
nents of d1(t) oscillating at frequencies ω0, 3ω0, 5ω0, . . . .
We denote a given frequency by Nω0, where
N = |2 (n+m− n′ +m′) + 1|, and a given component
by dNω0

1 (t). Thus, Eq. (25) is replaced by d1(t) =∑
N d

Nω0
1 (t). Here, we are not interested in giving

d1ω0
1 (t) because it is a minor, nonlinear in x addition

to d0(t) defined by (24). As examples, we give instead
the formulae for d3ω0

1 (t) and d5ω0
1 (t). According to (25),

infinite number of combinations (n,m, n′,m′) constitute
a fixed N , in general. However, the assumption that
both |b| � 1 and |c| � 1 means, fortunately, that
among these combinations there are ones bringing dom-
inant contribution to the coefficients An

′,m′

n,m . This dom-
inant contribution comes from as small as possible in-
dices n,m, n′,m′ leading to the fixed N . For N = 3,
the dominant contribution was found to come from the
combinations (1, 0, 0, 0) and (−2, 0, 0, 0). As a result, the
leading part in both A0,0

1,0 and A0,0
−2,0 is proportional to

J2
0

(
bf2(t)

)
I20 (cf

2(t)) ≈ 1. However, the number of es-
sential combinations increases rapidly with increasing N .
For N = 5, one finds eight such combinations, namely
(2, 0, 0, 0), (1, 0,−1, 0), (1, 1, 0, 0), (1, 0, 0, 1), (−3, 0, 0, 0),

(−2, 0, 1, 0), (−2,−1, 0, 0), and (−2, 0, 0,−1). Any above
combination generates the leading part in the relevant
coefficient An

′,m′

n,m proportional to either bf2(t) ∼ x2, or
cf2(t) ∼ x2. The leading parts in the coefficients An

′,m′

n,m ,
found along this line, give the following close-form com-
ponents d3ω0

1 (t) and d5ω0
1 (t) of d1 (t):

d3ω0
1 (t) = −µ12

2

x3y

(y2 − 1)
2

y2 + 7

y2 − 9
f3(t) cos (3ω0t) , (32)

d5ω0
1 (t) =

µ12

4

x5y

(y2 − 1)
3

y4 + 42y2 + 53

(y2 − 9) (y2 − 25)

×f5(t) cos (5ω0t) . (33)
Obviously, the above formulae are valid outside the ex-
act odd-order resonances, i.e., for y 6= 1, 3 in (32) and
y 6= 1, 3, 5 in (33). As seen, the N -th component oscil-
lating at frequency Nω0 is made proportional to xN in
the approximation of both |b| � 1 and |c| � 1. With in-
crease in N , the dependence of the N -th component on
the laser frequency parameter y = ω21/ω0 gets more and
more complicated due to increase in the number of essen-
tial combinations (n,m, n′,m′) that have to be included.

4.3. Dipole moment when both |b| � 1 and |c| � 1

Now, we estimate the effect of the denominator in
the definition of the dipole moment, d(t) = d0(t)+d1(t)

1+|R|2 ,

on d(t). Since |R|2 � 1 for weak excitations, this effect
can be found by replacing |R| by |R0| � |R1| and using
the power expansion(
1 + |R0|2

)−1
≈ 1− |R0|2 +

(
|R0|2

)2
−
(
|R0|2

)3
+ . . .

Along this line we get d(t) = d0 (t) + d1(t) + dcor(t),
where the correcting term is
dcor(t) = − (d0 (t) + d1(t))

×
(
|R0|2 −

(
|R0|2

)2
+
(
|R0|2

)3
− . . .

)
. (34)

As an example, we shall find this correction under the
same assumptions as in Sect. 4.2.4, i.e., that both |b| � 1
and |c| � 1.

In analogy to the previous decomposition
d1 (t) =

∑
N d

Nω0
1 (t), we write dcor(t) =

∑
N d

Nω0
cor (t),

where the component dNω0
cor (t) of the total correction

oscillates at frequency Nω0. A given component dNω0
cor (t)

can be obtained elementarily by using (12), (24), (32)
and (33). The component d1ω0

cor (t) was found to be
nonlinear in x and, as much smaller than d0(t), it was
rejected. However, the components dNω0

cor (t), for N ≥ 3,
turned out to be comparable to dNω0

1 (t) given by (32)
and (33). We have found that, for N = 3, the leading
contribution (∼ x3) to d3ω0

cor (t) comes from d0(t) |R0|2
and is

d3ω0
cor (t) = −

µ12

2

x3y

(y2 − 1)
2 f

3(t) cos (3ω0t) . (35)
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Fig. 2. The coefficients aNω0(z) = dNω0 (t)
µ12

ρNfN (t)

× cos (Nω0t) in Eqs. (37)–(39) versus the laser fre-
quency parameter z = ω0/ω21, for N = 1, 3 and 5. The
vertical asymptotes are at z = 1 in (a), z = 1/3 and 1
in (b), z = 1/5, 1/3 and 1 in (c).

For N = 5, the leading contribution (∼ x5) to d5ω0
cor (t)

takes its origin in both d0(t)
(
|R0|2

)2
and d3ω0

1 (t) |R0|2

and amounts to

d5ω0
cor (t) =

µ12

4

x5y

(y2 − 1)
2
(y2 − 9)

f5(t) cos (5ω0t) . (36)

After including those corrections, the dipole moment is
d (t) = d0(t) + d1 (t) + dcor(t) =

∑
N d

Nω0(t), where
dNω0(t) means the leading term in the dipole component
oscillating at frequency Nω0. Obviously, d1ω0 (t) = d0(t)
and is given by Eq. (24). For N ≥ 3, we however
have dNω0(t) = dNω0

1 (t) + dNω0
cor (t). In conformity with

Eqs. (24), (32), (33), (35), and (36), one obtains

d1ω0(t) = d0(t) = 2µ12
xy

y2 − 1
f(t) cos (ω0t) , (37)

d3ω0(t) = −µ12
x3y

(y2 − 1) (y2 − 9)
f3(t) cos (3ω0t) , (38)

d5ω0(t) = µ12
(x5y)(y4 + 8y2 + 39)

(y2 − 1)3(y2 − 9)(y2 − 25)

×f
5(t) cos (5ω0t)

2
. (39)

Since x = ΩR/ω0, where ΩR = µ21 · ε0/}, the lead-
ing term in a given dipole component is proportional to
the appropriate even power of the transition dipole µ21

and the appropriate odd power of the electric field am-
plitude ε0.

To draw the time-independent factors in (37)–(39) as
functions of laser frequency ω0, we introduce the pa-
rameters ρ = ΩR/ω21 and z = y−1 = ω0/ω21 linked
to x through the relation ρ/z = x. As distinct from
x and y, the present laser strength and laser frequency
parameters ρ and z, respectively, have the transition
frequency ω21 in their denominators. After expressing
(37)–(39) in the language of ρ and we go to the coeffi-
cients aNω0(z) = dNω0(t)/µ12ρ

NfN (t) cos (Nω0t) com-
pletely determining the dependence of the amplitudes of
the dipole components dNω0(t) on laser frequency pa-
rameter z = ω0/ω21. This dependence is shown in Fig. 2.

4.4. Field-dependent correction to d1ω0(t)

Next, we calculate the nonlinear in x correction to the
dipole component d1ω0(t) = d0(t) under the assumption
that both |b| � 1 and |c| � 1. According to Sect. 4.2.4
and Eq. (34), this correction is defined as d1ω0

1 (t) −(
d0(t) |R0|2

)ω0

−
(
d1ω0
1 (t) |R0|2

)ω0

, where Aω0 means
the part of A oscillating at frequency ω0. To find
d1ω0
1 (t) we put 2 (n+m− n′ +m′) + 1 = ±1 in Eq. (25)

for d1(t) and take into account only the combinations
(n,m, n′,m′) of as small as possible values of the indices,
i.e., (0, 0, 0, 0) and (−1, 0, 0, 0). Then, Eq. (25) gives

d1ω0
1 (t) = −µ12

2

x3y

(y2 − 1)
2F (y, t)f

3(t) cos (ω0t) , (40)

where
F (y, t) = J0(bf

2(t))I20
(
cf2(t)

)
×
[
J2
(
bf2(t)

)
+

2

y

y2 + 1

y2 − 1
J1(bf

2(t))

+
3y2 + 1

y2 − 1
J0(bf

2(t))
]
. (41)

Equations (40), (37), (34) and (12) lead to(
d0(t) |R0|2

)ω0

=
µ12

2

x3y(3y2 + 1)

(y2 − 1)
3 f3(t) cos (ω0t) , (42)

(
d1ω0
1 (t) |R0|2

)ω0

= −µ12

8

x5y(3y2 + 1)

(y2 − 1)
4

×F (y, t)f5(t) cos (ω0t) . (43)
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Finally, we apply the series representations (Eq. (21)) for
the Bessel functions Jν and the modified Bessel functions
Iν , inherent in F (y, t), and group the terms with the
same powers of x. With the correction calculated in this
way, Eq. (37) is replaced by

d1ω0(t) = µ12

∑
n=0,2,4,...

an(y)
(
xf (t)

)n+1
cos (ω0t) , (44)

where, e.g.

a0 (y) =
2y

y2 − 1
, (45)

a2 (y) = −y
3y2 + 1

(y2 − 1)
3 , (46)

a4 (y) =
y

8

7y4 + 6y2 + 3

(y2 − 1)
5 . (47)

The first term in Eq. (44) is obviously equal to Eq. (37),
while the other terms point to the dependence of the
amplitude of the oscillation at frequency ω0 on higher
powers of the laser strength parameter x. For a given
ω0, these additional terms describe the dependence of the
refractive index n of the two-level system on strength of
the laser field since from (44) and the Lorentz–Lorenz
formula we get

n2 = 1 + 4πN |µ21|2 }ω21 (48)

×
(
b0 (z) + b2 (z) (ρf(t))

2
+ b4 (z) (ρf (t))

4
+ . . .

)
,

where N is the density of medium, bn (z) = an (y) /z
n+1

with z = ω0/ω21 and y = z−1, and ρ = ΩR/ω21. In
Fig. 3, we show the dependence of the coefficients bn on
the laser frequency parameter z.

To estimate the effect of laser strength on the re-
fractive index we take as the two-level model the
two lowest states in the hydrogen atom, i.e. the
1S = |〉 and 2P = |〉 states separated by the transi-
tion energy ~ω21 = 10.2 eV. The electric field interact-
ing with this system is assumed to come from the
neodymium glass laser (~ω0 = 1.17 eV). Consequently,
the frequency parameter y = ω21/ω0 = 8.72 and corre-
sponds to the regime of multiphoton excitation. Also,
we take x = 0.3 for the light strength parameter.
Since |r21| = z21 = 4

√
2 (2/3)

5 a.u., the taken x means
the laser electric field amplitude ε0 ≈ 0.017 a.u. corre-
sponding to the laser intensity 1013 W/cm2. This is the
highest available intensity because above it the model
becomes questionable due to the neglect of the possi-
ble upper-state ionization. For the assumed values of x
and y, we find that both |b| and |c| are much smaller
than 1 (precisely b = 5 × 10−3 and c = 6 × 10−4 from
(16)) as required for applicability of Eq. (48). Since
z = 1/y = 0.115 and ρ = x/y = 0.0344, the leading ef-
fect of laser strength on the refractive index comes from
the term b2(z)ρ

2 in (48). The ratio of this term to the
standard strength-independent term b0(z) is evaluated
as b2(z)ρ2/b0(z) ' − 3

2ρ
2 = −1.8 × 10−3 for the taken

frequency and strength of the laser field.

Fig. 3. The dependence of the coefficients bn (z) =
an (y = 1/z) /zn+1, given by Eqs. (45)–(47), on the laser
frequency parameter z = ω0/ω21, for n = 0, 2 and 4.

5. Summary

In this paper, we have worked with the appropriately
linearized version of the exact, quadratically nonlinear
Riccati-type differential equation for the ratio of the pop-
ulation amplitudes in a weakly laser-excited two-level
system. First, we have analytically solved this linearized
equation for arbitrary off-resonant laser frequencies and
arbitrary smooth shapes of the laser pulse. Then, this
solution has been used to derive an explicit formula for
the laser-induced electric dipole moment in the system.
Though complicated at the first sight, the formula has
been shown to take substantially simpler forms in dif-
ferent laser frequency and laser strength limits. Also,
we have used this formula to find some representative
Fourier components of the induced dipole moment and
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discuss the dependence of the amplitudes of these compo-
nents on the laser frequency and strength. To conclude,
this paper shows that the linearized Riccati equation for
population amplitudes is an effective analytical method
for nonlinear optics of two-level systems weakly excited
by a smooth laser pulse of frequency producing neither
one-photon nor odd multiphoton resonances.

The assumption of a smooth laser pulse physically
means that, in the time evolution of the pulse elec-
tric field f(t) cos (ω0t), the full width at half maximum
(FWHM) of the pulse shape function f(t) is much greater
than the optical period T = 2π/ω0. It is well justi-
fied for all standard laser pulses except the recently cel-
ebrated few-cycle pulses. Under this reasonable assump-
tion the time integral in Eq. (8) needs to be performed
from the product of the slowly time varying shape func-
tion f(t) and the function cos (ω0t) exp (iω21t) which is
fast varying as long as ω0 substantially differs from ω21,
i.e. in the absence of one-photon resonance. The ab-
sence of one-photon resonance practically means that the
one-photon detuning |ω21 − ω0| well exceeds the spectral
width of f(t). In the present paper, we in fact were fo-
cused on this off-resonance case. The motivation for us
was that in the majority of the ground-state atoms (ex-
cept some alkali atoms), molecules, and ions the transi-
tion frequency to the first excited state, ω21, is higher
or even much higher than a typical optical frequency ω0

(see Sect. 4.4, for example) and multiphoton excitation is
rather met. In this case of our interest, the integration in
Eq. (8) was performed by parts and only the dominant
term f(t) =

∫ t
t0
cos (ω0t

′) exp (iω21t
′) dt′ was retained.

The above assumptions of smooth pulse and absence of
one-photon resonance have led us to the explicit R0(t),
given by (12), valid for an arbitrary pulse shape func-
tion f(t). Thanks to this R0(t) we were then able to
find general (22) for the small correction R1(t) applicable
when no higher-order odd-photon resonance takes place
in the two-level system.

The case of any odd-photon resonance in the sys-
tem is more cumbersome. If one-photon resonance
(ω0 = ω21) is present, the starting Eq. (8) for R0(t) splis
into two integrals, namely 1

2

∫ t
t0
f(t′) exp (2iω21t

′) dt′ and
1
2

∫ t
t0
f(t′)dt′. For the assumed smooth-shape pulse,

the first integral can be approximated by the leading
term, − if(t) exp (2iω21t) /4ω21 coming from integration
by parts (see the beginning of Sect. 3). However, the
other integral makes it impossible to find R0(t) in an
explicit form valid for an arbitrary f(t). As a mat-
ter of fact, we are forced to choose a given shape for
f(t) at this stage. For some shapes (e.g., the familiar
f(t) = sin2

(
πt
tp

)
) the integral

∫ t
t0
f (t′) dt′ is expressed

in terms of elementary functions, while for other shapes
(e.g., the Gaussian shape f(t) = exp

(
−t2/t2p

)
) in terms

of non-elementary functions (error function). Only in the
first case, the small correction R1(t) could in principle be
found along the analytical line similar to that presented
in Sect. 3.

Consequently, no general expression like Eq. (22) can
be obtained for the correction R1(t) when one-photon
resonance takes place. If a higher-order odd-photon res-
onance is present, instead of one-photon resonance, then
R0(t) given by Eq. (12) is still valid. However, Eq. (18),
being the integrand in Eq. (10) for R1(t), needs to be sep-
arated into its resonant and off-resonant parts with the
use of the Fourier–Bessel expansions given by Eqs. (19)
and (20). Then, the off-resonant part of Eq. (18) can be
integrated over time in the same way as described before
Eq. (22). On the other hand, the resonant part should
be integrated on its own foot. Moreover, all processes
damping the upper level in more realistic two-level sys-
tem (e.g., spontaneous emission and ionization) should
be taken into account in the case of any odd-photon res-
onance. Phenomenogically, this damping can be included
to the model by adding the term− i γ2C2 to the right-hand
side of Eq. (3), where γ stands for the damping rate. As
a consequence, the right-hand side of the Riccati Eq. (1)
will be enriched by the extra term − i γ2R leading to ap-
propriate changes in Eq. (8) for R0 and Eq. (9) for R1.
Thus, the above analysis shows that, at any exact and
near odd-photon resonance, separate consideration of the
two-level model would be necessary in the framework of
linearized Riccati equation.
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