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Nonuniformity and noise are the two crucial factors that reduce the sharpness of infrared thermal images. It
is essential to correct the nonuniformity and remove the noise of thermal images. A method for the nonuniformity
correction and noise removal of the infrared thermal images that combines convolutional neural networks with
a double-Gaussian filter was proposed. To demonstrate the advantages of this method, the values of roughness
and nonuniformity of 300 infrared thermal images with different degrees of nonuniformity captured from various
focal distances and fields of view were analyzed based by combined convolutional neural networks with a double-
Gaussian filter. Furthermore, the results of that were compared in the form of a line chart with other commonly
used algorithms. As a result, combined convolutional neural networks with a double-Gaussian filter was neither the
best nor the worst one from the point of roughness and nouniformity while it was the best from a comprehensive
performance of view. So, combined convolutional neural networks with a double-Gaussian filter may be a potential

method for the nonuniformity correction and denoising of the infrared thermal image.
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1. Introduction

The noise and nonuniformity of infrared images are
mainly caused by the different outputs of infrared de-
tector array, and influenced by the ambient tempera-
ture of the infrared camera and the internal tempera-
ture of the detector [1]. Two kinds of methods were car-
ried out by the previous researchers to remove the noise
and nonuniformity of the infrared images. The first one
is calibration-based correction, which supposed that the
response of infrared detector is linear and that of desig-
nated pixels also remain stable. This method has been
implemented especially in military applications [2, 3].
For this method, a periodic calibration for the system
is needed to remove the influence of the drifting of pa-
rameters, which increase the complexity and decrease the
reliability of the system [4-6]. The second one is scene-
based correction, the influence of the drifting of param-
eters could be reduced by applying this method. But,
some preconditions were required to obtain a precise and
wide range of adaptive correction, for example, the ran-
dom scene [7—9]. The scene-based correction is rarely
used in hardware systems because of the complexity and
the limitations of environmental adaptability of the algo-
rithm itself.

In addition, noise removal is the other critical part of
the processing of the infrared images. Algorithms such
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as denoising based on the frequency domain and spa-
tial domain filter, enhancement based on the histogram
conversion, and the Retinex algorithm, and so on were
widely used to denoise the infrared images in previous
researches [10-15]. Different algorithms are suitable for
different applicable scenes. In other words, different al-
gorithms have different limitations, no algorithm could
be applied to all scenes [16-20]. Therefore, the further
research for the correction and enhancement of infrared
image should focus on these difficult problems:

1. Present new correction methods and ideas by tak-
ing the advantage of richer theoretical and mathe-
matical tools.

2. Build a better theoretical model that contains more
related parameters.

3. Faster processing speed.
4. Less bad effects, for example ghost image.

5. Less capacity for the computation and storage.

To solve the above difficult problems, especially the
(1) and (4), an algorithm that combined convolutional
neural network with double-Gaussian filter that was ab-
breviated as DGCNN was proposed in this paper. This
method produced superior restoration quality of the im-
ages and achieved cleaner images with less ghost effect.
The contributions of this paper were included as follows:

1. A convolutional neural network combined with
double-gaussian filter for noise removal and nonuni-
formity correction for the infrared images was
proposed.
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2. A group of empirical parameters of DGCNN was
created to obtain cleaner infrared image with less
ghost and noise.

3. The values of roughness and nonuniformity of the
infrared images based on different algorithms were
calculated to reveal the advantages of DGCNN.

The remainder of this paper is as follows. Section 2
briefly introduces the related theory of DGCNN. Exper-
iments in Sect. 3 compare the results of different algo-
rithms. Section 4 concludes.

2. Related algorithm theory

2.1. Traditional convolutional neural network

The commonly used convolutional neural network
(CNN) algorithm was proposed by Scribner et al. The
architecture of this algorithm contains three layers that
are the input layer, hidden layer, and output layer, re-
spectively. There are two important processes when the
algorithm is working that calculating the actual value
of the output and adjusting the weight parameters of
the neurons. The grayscale value of each pixel played as
the input values would be calculated completely in the
hidden layer, then the actual values would be outputted
from the output layer. The weight parameter for each
pixel will automatically determine and adjust the devi-
ation between the actual output value and the desired
output value using valid decision conditions and learning
methods. A widely used mathematical module of con-
volutional neural network algorithm for the uniformity
correction of infrared images was expressed as [14]:

Vi (K) = Gug () X (1) + Oi (), (1)
where k is the sequenced frame number of images, Y; ; (k)
and X, ; (k) are corrected and uncorrected responses of
(i,7) pixel in the array, respectively. G, ; (k) is the
gain correction coefficient of grayscale value of the pixel,
0;,; (k) is the offset correction coefficient of grayscale
value of the pixel. Besides, a correction of the coeffi-
cient G; ; (k) and O; ; (k) based on the bias between the
actual value of output and the value of expect output is
needed. While, the bias could be expressed as an error
function E; ; (k):

EB;j (k) = [Yi; (k) = fi; (B), (2)
where
i () = 3115 (B) + Xaga () + Ko )
+Xi 41 (F)]

is the value of expected output, which is an averaged
value of the grayscales of the cross neighborhood pix-
els of the (i, j) pixel. Moreover, f;; (k) would be car-
ried back to the hidden layer to compare with the cor-
rected value of output (Y;; (k)) by calculating the er-
ror function. When E; ; (k) > &, the correction coeffi-
cients G; ; (k) and O; ; (k) would be corrected, where €
is defined as a suitable threshold. According to Eq. (2),
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the partial derivative of E; ; (k) with respect to G; ; (k)
and O; ; (k) could be respectively written as
EZ (k) = 58 = 22X, (k) [Yi; (k) — fi; (k)]
E; (k) = 56 = 2[Yi; (k) = fuj (k)
Then, the G; ; (k) and O; ; (k) could be calculated as
Gij(k+1) =Gy (k) —2aX;; (k) [Yi; (k) — fi; (k)]
Oi7j (k‘ + 1) = Oi,j (ki) — 2 [Y;,j (k) — fi7j (k‘)]

3)

(4)

where « is the iteration step-size or learning rate. It
should be known that

fij (k) = i[XH,j (k) + Xij—1 (k) + Xig1,5 (k)

+Xi 1 (k)]

is equal to a mean filter based on the four-neighborhood.
It is the traditional neural network with an open-loop
structure because the X, ; (k) is an uncorrected output.
However, the complicated nonuniformity and noise of the
infrared image could not be corrected effectively by us-
ing the traditional convolutional neural network with an
open-loop structure.

2.2. Convolutional neural network
based on double-Gaussian filter

In order to correct a complicated nonuniformity and
noise of the infrared image, the method incorporated the
double-Gaussian filter algorithm into the traditional neu-
ral network algorithm was performed to adjust the weight
parameters of gain correction coefficient G, ; (k) and
the offset correction coefficient O; ; (k). The schematic
diagram of convolutional neural network is presented
in Fig. 1.

As the schematic diagram shows that the critical part
of this structure of neural networks is to define a suit-
able and reliable error function to correct the gain cor-
rection coefficient G; ; (k) and offset correction coefficient
0;,j (k). Now, we select a pixel area whose size is [a, b],
and define the expected output f; ; (k) as [21-23]:

> Y (F)Wi;
a,b
fig (k) = —<=3— ()
The weight parameter W;; is defined as:

(I; — L)*

2
Oy

Y. —Y;)?
Wi = H; ; eXP(*(]Uig))eXP(*

S

) (6)

where H; ; is a normalized constant, ¢ and j are the in-
dices of pixels, Y and I are the spatial and the grayscale
values of pixels, o5, 0, are the random variable vari-
ance of the spatial and grayscale values of the pixels,
respectively. o is regarded as an integer value, and the
value of o, ranges from 0 to 1. Substitute Egs. (5) and
(6) into Eq. (4), the modified gain correction coefficient
Gi,; (k) and offset correction coefficient O; ; (k) could be
expressed as
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Fig. 1. The schematic diagram of convolutional neural
network.

Fig. 2.

The schematic diagram of double-Gaussian filter.

Actually, the weight parameter W;; combined domain
and range filtering denoted as double-Gaussian filtering
in this paper. It replaces the pixel value at ¢ with an
average of similar and nearby pixel values. In a small
smooth neighborhood region, pixel values are similar to
each other, and the double-Gaussian filter acts essentially
as a common domain filter that averaged away the small,
weakly correlated differences between pixels caused by
noise. As presented in Fig. 2a, there is a sharp boundary
between a dark and a bright region. When the double-
Gaussian filter is centered on a pixel on the bright side
of the boundary, the filter assumes values that close to
one for pixels on the same side, and values close to zero
for pixels on the dark side. As shown in Fig. 2b for
a filter support centered two pixels to the right of the
step in Fig. 2a. The weight parameter W;; ensured the
weights for all the pixels add up to one. As a result,
the double-Gaussian filter essentially ignored the dark
pixels, and replaced the bright pixel at the center by the
averaged bright pixels in its vicinity. Conversely, when
the double-Gaussian filter centered on a dark pixel, the
bright pixels are essentially ignored instead. Therefore,
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Fig. 3. Software diagram of DGCNN.
Empirical parameters of DGCNN. TABLE I
Parameter | w o or Tterations Optlmllzatlon
algorithm
value 5 3 |03 50 SGD

as shown in Fig. 2c, good filtering behavior is achieved
at the boundaries because of the domain component of
the filter, and crisp edges are preserved at the same time
benefits from the range component.

Besides, in order to make the calculation of this al-
gorithm that combined double-Gaussian filter with con-
volutional neural network become much more efficient,
the stochastic gradient descent (SGD) method was used.
SGD is an online learning method that does not need to
store data in advance, while put the input data into the
model for training directly to reduce the storage require-
ments and increase learning efficiency.

Therefore, the method used to denoise and correct the
infrared images named DGCNN was a convolutional neu-
ral network that incorporated with double-Gaussian filter
and the SGD. The software diagram of this method was
presented in Fig. 3.
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Besides, the parameters of DGCNN were listed
in Table I. These parameters were selected empirically
according to a series of experiments carried out for the
best results of correction and denoising. The half width
of the kernel is assigned as w = 5, and the standard
variance of the double-Gaussian filter is sigma = [3, 0.3],
respectively.

3. Results and discussion

300 infrared images with the nonuniformity and noise
that captured from different fields of view were used as
the experiment data. As presented in Fig. 4, the first
infrared image of the data set was Fig. 4a, the 100th of
that was Fig. 4b, the 200th of that was Fig. 4c, and the
300th of that was Fig. 4d. Obviously, these four images
with different degrees of nonuniformity and noise, and all
the images were captured with various distance of focus
from different fields of view.

In order to illustrate the advantage of DGCNN, which
was compared with other algorithms used for the correc-
tion and denoising of infrared thermal images, such as
back propagation neural networks correction (BPCNN),
constant-statistics correction (CSC), temporal high pass
filter correction (THPFC), neural networks correction
based on median filter (MEDCNN), neural networks cor-
rection based on edge detection (EDCNN), and an im-
proved constant-statistics correction (ICSC). As known,
BPCNN and CSC are very practical algorithms to adjust
the nonuniformity of the infrared image, and many algo-
rithms had been deduced from the two algorithms and
become the one that correct and enhance the infrared
images much more efficient. It should be noted that all
the algorithms mentioned above belonged to the kind of
scene-based correction. Furthermore, all algorithms per-
formed in this paper were carried out by using MATLAB
2016, Natick, Massachusetts, USA.

As a result, the various effects of these algorithms on
the 300th image of experiment data were presented in
Fig. 5. In this experiment, the traditional CNN was
changed into a closed-loop CNN by defining the

i () = 3 ias (R) + Yiga (B) 4 Vi s )

+Yi 41 (k)]

as expected output value that would be feedback to the
NUC layer to modify the parameters of error function.
As shown in Fig. 5a, it is the raw image with noise
and nonuniformity, and the corrected result of CNN was
shown in Fig. 5b which smoother than the raw one.
CSC is a classical algorithm to correct the nonunifor-
mity of infrared thermal images, and the core concept
of CSC is supposed that the mean and variance of pix-
els response are consistent within a long period of time,
and the randomness of the scene is variable. As shown
in Fig. 5c, there are effects of ghost images in the correc-
tion result of CSC, because the infrared detector array
suffered a back scene of weak randomness. While, ICSC
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Fig. 4. Four images with different degrees of nonuni-
formity and noise that captured with various distance
of focus from different fields of views.

Fig. 5. Correction results of different algorithms. (a)
Raw, (b) CNN, (c¢) CSC, (d) ICSC, (e) THPFC, (f)
EDCNN, (g) MEDCNN, (h) DGCNN.

is an improved CSC algorithm in this paper by changing
the expectation and variance of the response of detector
into the mean value and variance of the pixels. As Fig. 5d
shows, the result of ICSC is smoother and with better
contrast than CSC because the effects of ghost had been
reduced by strengthened randomness of the back scene.
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THPFC is a statistical filter based on time domain, sup-
posing the nonuniformity noise of images is mixed with
the clutter of background. The images processed by
THPFC are separated into two parts, whose object in
the scene is the part of low frequency and nonunifor-
mity noise is the part of high frequency. Only the part
of high frequency is used to correct the nonuniformity,
which is conductive to correct the images in a proper
way and avoid the effects of ghost images. As Fig. be de-
picts, the correction result of THPFC is better than that
of CNN and CSC, which is smoother than CNN while
sharper than CSC. However, EDCNN and MEDCNN are
two algorithms that were derived from CNN. Actually,
MEDCNN combined a mean filter with the CNN.

In this paper, a 3 x 3 array as a kernel of the mean
filter was assigned to sort the sampling data in the neigh-
borhood and obtain the median value to determine the
central gray pixel value. The central gray pixel value
would be used as the expected output value feedback to
the NUC layer of the CNN to modify the parameters
of error function. While, EDCNN is a combination of
the edge detection and CNN by adding the sobel oper-
ator into the CNN algorithm. As known, mean filter is
a good choice for the smoothness of the noise while so-
bel operator is commonly used to distinguish the edges
in picture. As depicted in Fig. 5f and Fig. 5g, the re-
sults of the two algorithms of EDCNN and MEDCNN
are smoother than other results shown in Fig. 5a—e. Be-
sides, there are more details remaining in Fig. 5f than
in Fig. 5g because the sobel operator kept the edges in
picture from being filtered. Furthermore, DGCNN pro-
posed in this paper is the algorithm that combined the
double-Gaussian filter with the convolutional neural net-
works to correct the nonuniformity and remove the noise
of infrared thermal images. Actually, the error function
of traditional CNN was rewritten by adding weight pa-
rameters into the gain correction coefficient G; ; (k) and
the offset correction coefficient O; ; (k), as presented in
Eq. (7). Thus, the advantages of DGCNN can be con-
cluded as the values of the spatial pixels and grayscale
could be calculated simultaneously by iterating in the er-
ror function and adjusting the weight parameters, which
is beneficial to decrease noise and remain details of the
infrared thermal images. As presented in Fig. 5h, the
correction result of DGCNN is better than all the algo-
rithms mentioned above, which is smoother and sharper.

Besides, Fig. 6 is a clean infrared thermal image with-
out noise and nonuniformity. It is seen that Fig. 5h is
very close to the clean images, and that the contrast of
Fig. 5h could be changed to get a same result like Fig. 6.
According to the depiction above, the DGCNN is a bet-
ter algorithm for the correction and denoising of the in-
frared thermal image. However, it is not clear for us to
distinguish the slight difference among these images by
eyes. To make a clearer contrast, the values of roughness
and nonunformity of all the 300 corrected images were
calculated, respectively. The roughness was regarded as
a representation of smoothness of the infrared thermal
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Fig. 6. A clean infrared thermal image without noise
and nonuniformity.
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Fig. 7. Roughness of the infrared thermal image pro-
cessed by all algorithms.

images, and a smaller value of roughness corresponds to
a smoother image. The value of roughness for each of
the 300 infrared thermal images was calculated and nor-
malized to a range from 0 to 1. As Fig. 7 presented, the
sequential number of these images from 1 to 300 was hor-
izontal coordinate while the normalized value of rough-
ness as vertical coordinate. It was seen that roughness
of the 300 infrared thermal images processed by different
algorithms mentioned above can be ordered from lower
to higher order as: EDCNN < MEDCNN < DGCNN <
CSC < THPFC < CNN < ICSC.

However, the value of roughness is not the only one fac-
tor to define the quality of these infrared thermal images.
Besides, the nonunformity is the other essential factor to
affect the quality of infrared thermal images. It is known
that the value of nonunformity of infrared thermal image
was defined as the ratio of standard variance and mean
value of responses of all the effective pixels that can be
written as [24]:

M N
NUV = Tg m Z Z( avg)27
e (8)

—

_ 1
Vavg — MN-—(d+h) 21 '21 Vija
i=1j=

where M and N are the number of pixels in the row
and column of the infrared detector array, respectively.
Vi; is the response of the pixel at the position of (i, j)
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Fig. 8. Nonunformity value of the infrared thermal im-
age processed by all algorithms.

while V,y, is the mean value of the responses of effective
pixels in the infrared detector array. Besides, d and h are
the number of dead pixels and over hot pixels, respec-
tively. As Fig. 8 depicted, the values of nonuniformity
calculated out by different algorithms mentioned above
could be ordered from lower to higher order as: CS <
THPFC < DGCNN < EDCNN < MEDCNN < CNN <
ICSC.

As described above, the value of roughness calculated
based on DGCNN is higher than EDCNN and MEDCNN
while lower than that of others, which means DGCNN is
neither the best nor the worst choice from the point of
roughness. The value of nonuniformity obtained on the
base of DGCNN is lower than EDCNN and MEDCNN,
which means DGCNN is the better choice than that two
algorithms from the point of nonuniformity. In summary,
DGOCNN is neither the best nor the worst one from the
point of roughness and nouniformity while it is the best
one from a practical point view. Therefore, the DGCNN
is a potential method for the better correction and de-
noising of infrared thermal images.

4. Conclusion

A potential method for the nonuniformity correction
and noise removal of the infrared thermal images that
combined convolutional neural networks with a double-
Gaussian filter was proposed, which was expressed as
DGCNN. To demonstrate the advantages of this method,
300 infrared thermal images with different degrees of
nonuniformity captured from various focal distances and
fields of view were analyzed. Particularly, the value of
roughness and nonuniformity for each infrared thermal
image were calculated based on DGCNN. Besides, the
results of that were compared in the form of a chart line
with other commonly used algorithms, such as BPCNN,
CSC, THPFC, MEDCNN, EDCNN, and ICSC. As a re-
sult, DGCNN was neither the best nor the worst one
from the point of roughness and nouniformity while it
was the best one from a comprehensive performance of
view. Therefore, the DGCNN may be a potential method
for the nonuniformity correction and denoising of the in-
frared thermal image.
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