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A mathematical model based on the technique of a cellular automaton to simulate the dendritic solidification of
two-component alloys is presented. The results of numerical calculations were compared with the predictions of the
Scheil and equilibrium analytic models. Comparative analysis was carried out on the example of Al–3wt% Mg alloy.
The differences between the models were revealed by determining the profiles of the solid phase Mg concentration for
the three cooling rates 1, 25, and 70 K/s, assuming no diffusion and limited diffusivity in the solid state. It has been
found that the degree of microsegregation of the element in the test alloy is mainly controlled by the cooling rate,
and the effects of back diffusion are detectable only at low intensity of heat dissipation. Moreover, the developed
2D cellular automaton model allows simulation of the evolution of dendritic structures and determination of solid
compositions’ variations for different solidification conditions in the range from predictions of the equilibrium model
to the predictions of the Scheil model.
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1. Introduction

Currently, modelling of the dendritic structure in cast-
ings is performed using the cellular automaton method
(CA) or the phase field method (PF) [1–5]. In these
models, the equations of mass and heat transport as well
as relations describing the solidification front, its energy,
curvature, and surface tension anisotropy are solved in
a coupled manner. The mathematical apparatus of mod-
els allows to capture the real solidification conditions,
taking into account the local microsegregation of the al-
loy component, the interaction of solute fields, and the
local interaction between growing dendrites. Numerical
simulations reproduce very realistically the formation of
dendrite main arms and their growth, nucleation, and
development of the second or higher order arms and
their eventual fusion in the final solidification stage [3–8].
A fundamental quantity which describes the movement
of the solidification front is the growth velocity. In the
main group of CA models, it is determined based on so-
lute balance or solute flux balance at the solid/liquid in-
terface [3–6, 8]. The concentration gradient occurring
on the transformation front affects the diffusion rate, the
morphology of the structures, the solute distribution in
the liquid and solid phase during solidification, and, as a
result, the final microsegregation in the solidified casting.

On a macroscopic scale, solidification of metal alloys
is most often considered for equilibrium conditions or
based on the Scheil equation assuming no diffusion in
solid [9]. The Scheil model is used for alloys containing
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components with low values of solid phase diffusion coef-
ficient, solidifying in a wide range of temperatures, while
the equilibrium solidification model is applied to alloys
containing components with high values of this coefficient
or alloys that solidify at very low heat dissipation rate.
However, in the dominant group of castings produced
by basic casting techniques, solidification has an indi-
rect characteristic. Then the average concentration of
the component and its distribution in solid during solid-
ification is between the values resulting from the equilib-
rium model and the Scheil model. The aim of this work
is to compare the simulation results of the developed CA
model with analytical predictions of Scheil and equilib-
rium models, which are often applied to model numerical
solidification and experimental research [10, 11].

2. Governing equations

The CA was determined for a planar area divided into
uniform square cells with side length ∆x. The state of
each cell was described by the following basic quanti-
ties: fraction of the solid phase gS , temperature T , con-
centration of solute C, phase state F , preferential crys-
tallographic orientation angle θ0, the average curvature
of the interface κ, and the direction normal to the in-
terface ϕ. Two types of neighbourhoods were used in
the calculation procedure. The von Neumann neighbour-
hood was adopted for the energy and mass transport phe-
nomena, while the Moore neighbourhood was applied for
all other cases. The calculations were started by ran-
domly determining the position of the nucleation cells
and assigning them also a randomly preferential crystal-
lographic orientation [2, 6, 12]. Scanning the automaton
was carried out on blocks of the elementary cell with the
dimensions 3× 3.
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During solidification, cells change their state from liq-
uid (gS = 0) to interface (0 < gS < 1), and then to solid
(gS = 1). At the moment when the solid fraction in a cell
reaches 1, its state is changed to solid, and the neighbour-
ing cells in liquid are captured to the interface, inheriting
the preferential crystallographic orientation. The basis of
the applied cellular automaton consists of the three fields:
the temperature field, the solute concentration field, and
the solid phase fraction field. They reproduce the kinet-
ics of the dendritic structure growth both in quantitative
and qualitative aspects. The local position of the solidifi-
cation front and the local shape of dendrites are obtained
by the coupled solution of model equation system. The
mathematical form of the developed CA model in a two-
dimensional computational domain is expressed by

• energy equation
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where gS is solid fraction, t is time, L is latent heat,
ρ is density, T is temperature, λ is thermal conductivity,
and cp is specific heat.
• solute conservation equation
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where CR is solute concentration determined by CL for
liquid and CS for solid with appropriate DL and DS as
solute diffusion coefficients, and k is partition coefficient.
• equilibrium temperature at the solid/liquid interface

TF = TL +
(
CF

L − C0

)
mL − Γ κ̄f(φ, θ0), (3)

where Γ is the Gibbs–Thomson coefficient, κ is interface
curvature, f(φ, θ0) is anisotropy function, φ is growth
angle, θ0 is preferential crystallographic orientation an-
gle, CF

L is solute concentration at the interface,
C0 is solute concentration in the alloy, mL is slope of
the liquid, and TL is equilibrium liquid temperature.
• equation on the average curvature of the interface [13]:

κ̄ = −(∇ · n̂) =
1
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]
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where n is normal unit vector to the solidification front.
• anisotropy function

f(φ, θ0) = [1− δ cos (mS (φ− θ0))] , (5)
where ms is crystal-order parameter, for cubic symmetry
ms = 4, δ is the anisotropy coefficient.
• growth angle between the normal direction to the in-
terface and the reference direction 0x

φ = arctan

(
Mx

My

)
, (6)

where Mx and My indicate moments of the system rela-
tive to the coordinates 0x and 0y, respectively. They are
defined as:

Mx =

6∑
i=1

gyS,i∆x, (7)

My =

6∑
i=1

gxS,i∆y, (8)

where gxS,i is solid fractions in cells gNE , gE , gSE ,
gNW , gW , gSW , gyS,i are solid fractions in cells gNW , gN ,
gNE , gSW , gS , gSE , the superscripts being related to the
position of cells named according to the compass rose.

At each time step interval ∆t, the solid phase increase
in interface cells is calculated by comparing the local
interface equilibrium concentration CF

L determined by
the transformed formula (3) with the actual liquid
concentration CL from (2). If, after the comparison the
difference is greater than zero ∆C = CF

L −CL > 0, then
in the interface cell the solid fraction increases according
to the relation

∆gS =
(
CF

L − CL

)
/
(
CF

L − CF
S

)
.

3. Simulation results and discussion

Numerical simulations of dendritic solidification were
performed for the alloy Al–3wt% Mg on a cellular au-
tomaton with a size of 256× 256 cells. The dimension of
the unit cell was 2 µm. The periodic boundary condition
for the diffusion equation and the Neumann boundary
condition for the heat transport equation were assumed
for the domain walls. At the initial time, the temper-
ature and concentration distributions in the whole area
were homogeneous and were defined as T0 and C0, respec-
tively. After reaching the liquid temperature, 8 nuclei
were randomly placed in the domain, assigning them

Fig. 1. Evolution of dendrites in the Al–3wt%Mg alloy
at a cooling rate of 25 K/s with solute distribution fields.
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Fig. 2. Solid phase Mg concentration profiles obtained
at the cooling rates 1, 25, 70 K/s and the Scheil model.

a preferential crystallographic orientation angle also us-
ing randomization procedures. The evolution of den-
drites and the corresponding Mg concentration fields in
the subsequent calculation steps are shown in Fig. 1.

Comparison of the developed CA model with the Scheil
and equilibrium models was carried out on the basis of
solid phase Mg concentration profiles. In order to deter-
mine the differences between the predictions of the nu-
merical and analytical model, two series of simulations
were performed. In the first series, the effect of cooling
rate on the variation in solid composition was analyzed,
assuming no diffusion in the solid and limited diffusion
in the liquid. The calculations were carried out for three
cooling rates of 1, 25, 70 K/s, and the Scheil model, de-
creasing the temperature from the liquidus temperature
to the eutectic temperature. Changes in Mg concentra-
tion in the solid phase as a function of the solid fraction
are presented in Fig. 2.

Figure 2 shows that in the initial solidification stage,
the solid phase Mg concentration for the CA model is
higher than that in the Scheil model, while in the final
transient period the relation is reversed. Such differences
in Mg concentration profiles result from the assumption
of the Scheil model, i.e., unlimited diffusion of the com-
ponent in the liquid. Whereas, in the numerical model
the concentration gradient occurring on the solidification
front and in the liquid is taken into account. Based on
the characteristics determined from the CA model, it can
be concluded that the inhomogeneity of liquid and dif-
ferences in the results of both models increase as the
cooling rate increases. Simulations also showed that the
increment of solid fraction (dendrites) in the initial and
middle stages of solidification proceeds at very small vari-
ations in Mg concentration. Such solid phase increment
corresponds to solidification under steady state condi-
tions. The papers [6, 12, 14] compared CA solidification
models with the LGK [15] analytical model of steady
state dendrite tip growth. It was found that for small
and medium undercooling (cooling rates) in binary and
multi-component alloy melts there is a high consistency

Fig. 3. Comparison between analytical models and the
CA model for prediction of solid composition assuming
no and limited diffusion in the solid phase and cooling
rate of 25 K/s.

Fig. 4. Comparison between analytical models and the
CA model for prediction of solid composition assuming
no and limited diffusion in the solid phase and cooling
rate of 1 K/s.

of concentration profiles obtained in both approaches. In
addition, the study [12] showed that the modeled solute
distribution during solidification of SCN-Ace alloy sys-
tem corresponds to the experimental data.

The second series of simulations concerned the investi-
gation of the effect of solid phase diffusion on the course
of the solidification process and microsegregation. The
calculations were made for two cooling rates of 1 K/s
and 25 K/s, assuming limited diffusion in the liquid and
solid. The comparison of the results from the numer-
ical model with the predictions of analytical models is
presented in Figs. 3 and 4.

At high cooling rates (Fig. 3), solid phase diffusion
processes have no significant effect on the solidification
behaviour of the alloy. The curves obtained for the diffu-
sion coefficient set to zero and non-zero almost coincide
with each other. For a cooling rate of 25 K/s, the to-
tal solidification time is too short for back diffusion to
be detected.
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Fig. 5. Mg concentration at the solidification front for
different cooling rates and diffusion coefficient values —
the solid fraction equal to 0.985.

The phenomenon of solid phase diffusion is evident in
the case of solidification with low intensity of heat dissi-
pation (Fig. 4). In this variant, back diffusion leads to
the homogenization of the solute in the dendrites, which
results in a significant shift of the Mg concentration pro-
file towards the equilibrium model predictions. The solid
composition variation during growth is quite different,
assuming no diffusion DS = 0. The determined curve is
the closest to the one calculated from the Scheil model.
Zhu and Stefanescu [12] presented similar characteristics
and solute concentration profiles by comparing the Scheil
model with their own virtal CA model on the example of
Al–Cu binary alloy solidification.

Figure 5 shows the concentration of Mg at the solidifi-
cation front for different cooling rates and diffusion coeffi-
cient values. The calculations were made for a solid frac-
tion equal to 0.985, which corresponds to the achievement
of the eutectic point composition in the Scheil model.
The highest solute microsegregation arises for the solidi-
fication according to the Scheil model and the CA model
with the assumptions of low cooling rate and zero dif-
fusion coefficient. With the increase of the cooling rate,
the growth rate of dendrites as well as the concentration
of Mg increase in the interface cells in the initial and
middle stages of solidification. As a result, the solid so-
lidifying from magnesium enriched liquid is more homo-
geneous despite the absence of diffusion [9]. The lowest
microsegregation of the component and the composition
of the solid phase close to the predictions of the equilib-
rium model are obtained for non-zero diffusion coefficient
and low intensity of heat dissipation. The solid phase dif-
fusion process at low solidification rate homogenizes the
dendritic structure of the alloy. Magnesium microseg-
regation during solidification of nominally single-phase
Al–Mg alloys is a harmful phenomenon because it con-
tributes to the formation of the Al8Mg5 phase and inter-
crystalline corrosion of castings [16].

4. Summary

The developed two-dimensional CA model allows sim-
ulation of solid phase growth for different solidification
conditions. Depending on the cooling rate and the diffu-
sion rate, it is possible to determine solidification curves
that vary within a wide range from the Scheil model
predictions to the equilibrium model predictions. The
degree of microsegregation of an element in the tested
Al–3wt% Mg alloy is mainly controlled by the intensity of
heat dissipation. The solid phase diffusion effects are only
detectable at low cooling rates. Apart from determin-
ing the solidification characteristics and local segregation,
the developed model allows for realistic reproduction of
dendritic structures. Using the CA model, the following
phenomena are simulated: formation and coarsening of
the first-order arms and initiation, evolution and fusion
of the secondary arms, including the mutual interaction
between the individual dendrites as they grow.
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