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Critical Behavior of a 2D Spin-Pseudospin Model
in a Strong Exchange Limit
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We study the 2D static spin-pseudospin model equivalent to the dilute frustrated antiferromagnetic Ising
model with charge impurities. We present the results of classical Monte Carlo simulation on a square lattice
with periodic boundary conditions in a “strong” exchange limit. In the framework of the finite-size scaling theory
we obtained the static critical exponents for the specific heat α and the correlation length ν for a wide range of
the local density–density interaction parameter ∆ and charge density n. It was shown that the system exhibits
non-universal critical behavior depending on these parameters.
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1. Introduction

Magnetic materials with competitive interactions or
geometric frustration are being investigated for past sev-
eral decades because of a rich variety of exotic mag-
netic phases and unconventional critical behavior [1].
A frustration may apply different phase-transition sce-
narios, nonuniversality, new critical points [2]. Addition-
ally, the effect of impurities may lead to a crossover to
a novel critical behavior [3]. Coexistence and competi-
tion of charge and spin orderings is typical for high-Tc
cuprates [4]. To study the spin-charge competition in
cuprates such as La2−xSrxCuO4, a simple static spin-
pseudospin model has recently been proposed [5, 6].
This model is equivalent to the frustrated antiferromag-
netic 2D Ising model with charged impurities. The
model considers the CuO2 planes as a system of charge
triplets Cu1+,2+,3+, associated with the three projections
of the S = 1 pseudospin. At variance with nonmagnetic
hole (Cu3+, MS = +1) and electron (Cu1+, MS = −1)
centers, the Cu2+ (MS = 0) center corresponds
to a quantum magnetic center with conventional
spin s = 1/2.

The Hamiltonian of the model includes the on-site and
inter-site density–density correlations (∆ and V ), and the
Ising spin exchange coupling (J):

Ĥ = ∆
∑
i

Ŝ2
iz + V

∑
〈ij〉

ŜizŜjz + J
∑
〈ij〉

P̂i0ŝiz ŝjzP̂j0,(1)

where P̂i0 = 1− Ŝ2
iz is a projection operator, which picks

out the spin-magnetic Cu2+ state, the sums run over sites
of a two-dimensional square lattice, and 〈ij〉 means the
nearest neighbours. We assume the total charge con-
straint
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n =
1

N

∑
i

Ŝiz = const, (2)

where n is the density of the doped charged impurities in
the system. Nonmagnetic charge impurities might serve
as an annealed disorder and also affect the critical be-
havior.

This paper is devoted to the study of the critical prop-
erties of this model for different values of parameters ∆
and n. Recently, we have shown [7] that the ground state
phase diagram of the model strongly depends on the ra-
tio V/J . Hereafter in this paper we focus on the “strong”
exchange limit, when V < J/4.

2. Methods

The critical properties of the system with Hamilto-
nian (1) have been analyzed by means of modified parallel
Monte Carlo algorithm [8] under periodic boundary con-
ditions. The critical temperature Tc of the phase transi-
tion to an ordered state was determined by intersection
of the Binder cumulants UL = 1−〈O4〉L/3〈O2〉2L for dif-
ferent lattice sizes L [8], where O is an antiferromagnetic
or charge order parameter.

In order to estimate the value of the critical exponent
for the specific heat α we made use of a data fitting to
a power law C ∼ |(T − Tc)/Tc|−α near Tc (the direct
method). In addition, the finite-size scaling theory [10]
was used in the first order:

C (Tc, L) = C0L
α/ν , (3)

while for the Ising critical behavior
C (Tc, L) = C0 lnL, (4)

where C0 is constant, ν is the critical exponent for the
correlation length. The latter can be obtained from

Vn =
〈OnE〉
〈On〉

− 〈E〉, Vn = L1/νgVn
, (5)

where Vn is the logarithmic derivative of the order
parameter On, gVn

is constant [11].
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3. Numerical results

Figure 1a shows the T/J–∆/J phase diagram obtained
at n = 0.2. In case of ∆ < ∆∗ = −0.3J , a transition to
the charge ordered (CO) phase occurs, while for ∆ > ∆∗

the antiferromagnetic spin ordering (AFM) is formed as
the temperature is lowered. At the point ∆ ≈ ∆∗ both
magnetic and charge subsystems have the same energy,
so the ground state shows a degeneracy. The system
evolves from the non-ordered paramagnetic phase (NO)
to frustrated state with macroscopic phase separation on
AFM and CO types of orderings. A complete ordering
into an uniform state for n = 0 reaches only at T = 0,
which indicates the quantum critical point. For n 6= 0 one
can observe two sequential phase transitions for ∆ > ∆∗:
the first, AFM ordering diluted by randomly distributed
charge impurities, and the second, unconventional phase
separation (PS), described in [12]. The configuration of
the PS phase depends on the doping concentration n, as
it is shown on the ground state phase diagram (Fig. 1b).
Depending on n, either a charge “droplet” or “stripe” is
formed in the ground state, or antiferromagnetic droplet
or stripe. Such configurations become preferable due to
minimization of surface energy in a finite-size system with
periodic boundary conditions. One should note that frus-
tration also affects the PS states: there are macroscopic
parts of the CO phase inside the charge droplets and
stripes for ∆ ≈ ∆∗.

Fig. 1. (a) The T/J–∆/J phase diagram for n = 0.2.
(b) The ground state phase diagram. The snapshots of
real states are made on a square lattice 32×32. NO de-
notes the non-ordered phase, CO — charge order, AFM
— antiferromagnetic order, PS — phase separation.

Fig. 2. The critical exponents α and ν as functions of
n and ∆. (a) The direct method results for α. (b), (c)
The dependences of α and ν respectively on ∆ (top)
and n (bottom). White circles correspond to the finite-
size method, black triangles correspond to the direct
method.

The dependences of the critical exponents α and ν on
n and ∆ are shown in Fig. 2. The values of α in contour
plot and black triangles were determined by the direct
method, whereas white circles correspond to the finite-
size scaling results. Qualitatively both methods give sim-
ilar results for α. The values of ν presented in Fig. 2c were
used to determine α in the finite-size scaling method. For
|∆| � ∆∗ and small n the specific heat at Tc grows slower
than any positive degree, and we used (4), which corre-
sponds to α = 0. It is worth noting that the similar
method is used in [13]. Moreover, the values of ν in that
case are equal to 1.0(0), which points to the 2D Ising
universality class.

As one approaches the quantum critical point ∆∗, the
critical exponents dramatically change, and crossover be-
tween two types of critical behavior takes place. The
critical exponents reach its extreme values close to the
frustration point ∆ ≈ ∆∗. The bottom parts in Fig. 2b
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and c show the dependences of α and ν on n, respectively,
for ∆ = 0. It can be seen that doping the impurities also
leads to the crossover between the 2D Ising class and
non-universal critical behavior. A similar crossover was
suggested in review [3].

4. Conclusions

We presented a Monte Carlo study of a static 2D spin-
pseudospin model that generalizes a 2D site-diluted an-
tiferromagnetic Ising model with frustration due to com-
petition between charge and spin degrees of freedom.
An analysis of the ground state revealed various types
of phase separation depending on the concentration of
doped charge impurities n. The critical exponents for
the specific heat α and for the correlation length ν have
been determined. The high accuracy Monte Carlo simu-
lations allowed us to estimate α directly from the temper-
ature dependence of the specific heat for a wide range of
parameters ∆ and n. Also, for n = 0 and ∆ = 0 the ex-
ponents are calculated in the framework of the finite-size
scaling theory. Both methods give qualitatively similar
dependences of the critical exponents on the parameters
of the system.

The model exhibits a crossover of the critical behavior
from the 2D Ising universality class to non-universality.
As one approaches a quantum critical point ∆∗, as well
as the doped charge density n increases, the critical ex-
ponents begin to depend on the model parameters. The
critical exponents reach its extreme values in a quan-
tum critical point, and vary monotonically depending
on doping.
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