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The aim of this paper is to compare the anisotropies in a system containing isolated magnetic centers produced
by two independent effects. The first one is the interaction of an otherwise isotropic ion with the external magnetic,
giving rise to the field induced anisotropy. The other one is due to the local interaction with the ligand field known
as the zero field splitting. Integer and half integer spins are considered. Field induced anisotropy is of the easy-plane
character and, under the constraint of gugSH = D, it is inferior to that due to zero field splitting except for the
case of the half integer spin at the lowest temperatures. At high temperature the anisotropy vanishes independent

of the spin parity as expected.
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1. Introduction

Magnetic anisotropy is one of the technologically
promising features of molecular magnets. On the one
hand, it directly affects the size of the barrier to reversal
of magnetization which is a determining factor in whether
the magnetic species, such as a single-molecule or single-
ion magnet [1, 2], may be used as the smallest component
of data storage. On the other hand, it provides the play-
ground for engineers willing to construct directionally
programmable sensors. Hence, the widespread quest for
new materials exhibiting strongly anisotropic magnetic
properties. In the case of single-ion magnets the mag-
netic anisotropy arises from a specific configuration of
the ligand field and is known as the zero-field splitting [3],
because it occurs in the absence of the external magnetic
field. On the other hand, the applied magnetic field itself
does introduce the anisotropy in the otherwise isotropic
media of paramagnetic pure spin carriers. Hence, a nat-
ural question arises how these two types of magnetic
anisotropies, i.e., field induced anisotropy (FIA) on a
pure-spin ion or zero field splitting (ZFS) anisotropy on a
single-ion species, compare between themselves. To the
best of our knowledge this issue has not been tackled
yet. The present communication addresses this prob-
lem drawing extensively on the results obtained in [4],
where both types of anisotropies for ions with spin of 1,
3/2, 2, and 5/2 were discussed. On the one hand, the
need for such considerations is strongly implied by the
developments in the field of coordination chemistry [5-7],
in general, and in that of isolated polynuclear d-
or f-electronic systems displaying substantial magnetic
anisotropies [8-13], in particular. On the other hand, we
know of no experimental setup dedicated to measuring
the field induced anisotropy nor the issue is addressed in
the otherwise comprehensive reviews [14, 15].
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2. Results

The approach adopted in this work is to present the
temperature dependence of the magnetic susceptibilities
and the corresponding anisotropies for two cases, i.e.,
where the anisotropy is purely field induced (FIA) or ex-
clusively due to the zero-field splitting (ZFS). The model
systems will involve an instance of the ion with integer
(S = 1) and half integer (S = 3/2) spin. In order to
enable the comparison between the different situations
reduced temperatures ty and tp will be defined, i.e.,
dimensionless measures of temperature normalized with
respect to the characteristic energy scales of both effects.

2.1. Field induced anisotropy

Let us consider the interaction of localized magnetic
moments with the external magnetic field H assumed,
without loss of generality, to be aligned along the z axis.
The corresponding reduced temperature is defined as:

kT
tn =~ (1)
where kp is the Boltzmann constant, 4 = gugS is the
magnetic moment corresponding to spin S5, g denotes the
spectroscopic Landé factor, and pug — the Bohr mag-
neton. The corresponding susceptibility tensor is then
diagonal xy = diag (X 1yX1, XH) and its components read

2

X1 (8.t) = 20w (), 2
X (S, te) = % (wl(tH) + wa (S, tH)): (3)

where Ny is the Avogadro number (molar quantities are
considered) and

wi (t) = tBs(t),

wa(St) = 2L 2 L o (215t> Bs(t)

s S
—tBg(t) — B(t) (4)
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Fig. 1. Temperature dependence of the diagonal com-

ponents of the susceptibility tensor, given in Eqs. (2)
and (3), for spin values S = 1 (red), and 3/2 (blue),
corresponding to the case of anisotropy induced by ap-
plied field H = [0,0, H].

with Bg(t) being the Brillouin function. Figure 1 shows
the temperature dependence of the susceptibility tensor
components together with the mean value of the suscep-
tibility Xmean, calculated as one third of the susceptibil-
ity tensor trace. Two spin values are considered S = 1
and S = 3/2 with the Landé factor ¢ = 2. It is appar-
ent that independent of the spin value the field induced
anisotropy is of the easy-plane character with x, > x
for all temperature values.

2.2. Zero field splitting

Let us consider the local anisotropy of the spin S ion
due to the zero field splitting effect. For the sake of com-
parison only the axial ZFS parameter D is assumed to
be nonzero and positive (D > 0), which is known to give
rise to the easy-plane anisotropy. Moreover, let us assume
that the spectroscopic tensor g = diag(2,2,2). The cor-
responding reduced temperature pertinent to this case
reads
kT

o8 5)
In this case the susceptibility tensor is similarly diagonal
x = diag(x1, x1, X)) with the corresponding compo-
nents given by the formulae

8Nap3 exp (1/tp) — 1
=1,tp) = t
xa($ /tp) ksT exp(l/tp) +2 b (6)
SNAM% 1
= 1 =
S =1t0) = = ) + 2
for S =1, and for S = 3/2 by

XL(S=3/2,tp) =

tp =

(7)

ANppg 1
kgT 2

(1 + tanh (1/tp) + gtp tanh(l/tD)) , (8)
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Fig. 2. Temperature dependence of the diagonal com-
ponents of the susceptibility tensor, given in Egs. (6)—
(9), for spin values S =1 (red), and 3/2 (blue), corre-
sponding to the case of ZFS anisotropy with a positive
axial parameter D > 0.

X|(§=3/2,tp) = 41:}:;]3 (Z —tanh(l/ta)) )

Figure 2 shows the temperature dependence of the sus-
ceptibility tensor components together with the mean
value of the susceptibility Xmean for both spin values.

2.83. Comparison of FIA and ZFS effects

For the sake of comparison of the anisotropy effects in
the cases of FIA and ZFS let us define a measure of the
anisotropy based on the susceptibility tensor components

XL =X
a="—"".
Xmean
The thus defined anisotropy parameter a is dimension-
less and positive for the easy-plane type of magnetic
anisotropy, where x1 > x). The temperature depen-
dences of parameter a calculated in the FIA and ZFS
cases for S = 1 and 3/2 spin values are depicted in Fig. 3.
The plot assumes the equality ty = tp = t. Let us
note that there is a nontrivial scaling factor between t gy
and tp, i.e. tg = ftp, where f = D/(uH). The con-
dition ty = tp =t is thus equivalent to the parameter
constraint D = uH.

It is apparent from Fig. 3 that the shapes of the curves
corresponding to the FIA case are similar for both spin
values assuming a maximum at ¢ = 0 and monotonically
decreasing with increase of temperature. By contrast,
the shapes of the curves corresponding to the ZFS case
differ depending on whether the spin is integer or half
integer. For the integer spin (S = 1) the a vs. ¢ curve
is similar to that of the FIA case displaying consistently
higher values, while for the half integer spin (S = 3/2)
the corresponding curve displays a local maximum at
the finite value of tax =~ 0.37 monotonically decreasing
above tpax. At the same time, for S = 3/2 the amplitude
of @ at t = 0 is lower in the ZF'S case than in that of FIA.

(10)
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Fig. 3. Temperature dependence of the magnetic

anisotropy parameter a given in Eq. (10) for the FIA
(black or red), and ZFS (green or blue) case, and spin
values of S =1 (black or green) and 3/2 (red or blue).
Positive values indicate the easy-plane anisotropy. The
plot presumes the parameter constraint D = puH.

Hence, at the lowest temperatures below the intersection
temperature of ¢; ~ 0.30 it is the field induced anisotropy
that is more effective than the anisotropy due to the zero
field splitting.

3. Conclusions

Two effects affecting the susceptibility tensor of a sam-
ple with non-interacting magnetic centers have been
presented and compared, i.e., the anisotropy induced
by the applied magnetic field and that due to the local
interaction of the ZFS type. Integer and half integer
spins were considered. The field induced anisotropy is of
the easy-plane character and, under the parameter con-
straint of gugSH = D, it is inferior to that due to ZFS
except for the case of the half integer spin at the lowest
temperatures. At high temperatures the anisotropy

parameter a collapses to zero in every case as expected.
In most experimental cases the magnetic susceptibility is
studied in low fields, e.g., 0.1 T or less, and the influence
of FIA is negligible if ZFS is substantial. However, FIA
rises in importance if one considers weakly anisotropic
systems at low temperatures, especially those comprising
half integer spins.
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