
Vol. 137 (2020) ACTA PHYSICA POLONICA A No. 5

Proceedings of the 17th Czech and Slovak Conference on Magnetism, Košice, Slovakia, June 3–7, 2019

Interlayer Dzyaloshinskii–Moriya Interactions
in a Quasi-Two-Dimensional Spin 1/2 Antiferromagnet

Cu(en)(H2O)2SO4

J. Chovana,b,c, L. Lederovád, A. Orendáčovád,∗, R. Tarasenkod,
V. Tkáčd, M. Orendáčd, D. Leguta and A. Feherd

aIT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava,
17. listopadu 2172/15, CZ 708 33 Ostrava, Czech Republic

bDepartment of Physics, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
cInternational Clinical Research Center, St. Anne’s University Hospital, Pekařská 53, 656 91 Brno, Czech Republic

dInstitute of Physics, P.J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovakia

We present a theoretical study of magnetic interlayer exchange couplings in a quasi-two-dimensional quantum
antiferromagnet Cu(en)(H2O)2SO4 (en =C2H8N2). We use symmetry arguments to construct the most general
form of interlayer spin exchange interactions, and discuss the significance of individual terms. Particular attention
is paid to the antisymmetric Dzyaloshinskii–Moriya spin anisotropy, allowed for the interlayer interactions in the
ab-planes. We argue that it should not lead to weak ferromagnetism of neither conventional nor hidden type.
Instead, the distribution of Dzyaloshinskii–Moriya vectors is typical for helimagnets. However, the occurrence
of helimagnetism appears unlikely due to the assumed hierarchy of the magnitudes of spin interactions and the
opposite chirality in adjacent ab-planes.
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1. Introduction

Cu(en)(H2O)2SO4 (en = C2H8N2) (CUEN) was
originally identified as a quasi-two-dimensional (2D)
easy-plane Heisenberg antiferromagnet (HAF) with spin
S = 1/2 on the spatially anisotropic triangular lattice [1],
which becomes magnetically ordered below TN = 0.91 K.
Recent experimental and theoretical study established
CUEN as a representative of the S = 1/2 HAF on a zig-
zag square lattice [2] within the magnetic bc-layers. This
picture, suggested by ab-initio calculations [3], was cor-
roborated by finite-temperature quantum Monte-Carlo
simulations and single-crystal measurements of the spe-
cific heat, susceptibility, and magnetization. Symmetry
analysis of magnetic layers indicated only the presence of
symmetric spin exchange anisotropies (SEA) and antici-
pated an easy-axis within the easy plane. The easy-axis
was identified experimentally through the observation of
a spin-flop transition in a magnetic field 200 mT applied
along the b-axis.

The emerging picture of a collinear HAF with two in-
tralayer SEA is mostly consistent with the data, but some
issues remain unexplained. More specifically, the differ-
ences in the susceptibility measured in the field-cooling
and zero-field-cooling regimes, the susceptibility peak be-
low the Néel temperature [2], and the observed hystere-
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sis in a field along the b-axis [4] suggest the presence
of hidden spin canting of unknown origin. On the other
hand, such canting is usually produced by antisymmet-
ric Dzyaloshinskii–Moriya [5, 6] spin interactions (DMI),
which are allowed for the interlayer couplings [1]. The
study of the interlayer interactions is accentuated by
the recent antiferromagnetic-resonance (AFMR) exper-
iments on CUEN [7] which confirmed the existence of
the two q = 0 magnon gaps, but also observed a small
splitting of both branches. Invoking a small isotropic
interlayer coupling [8] could explain the splitting, but
not its actual observation in a collinear antiferromagnet
(AF), because the two of the eigenmodes do not couple
to the rf-field and should not be excited.

Our goal is to analyse interlayer spin interaction in
CUEN and elucidate the role of the individual terms.
We argue that the DMI in CUEN should not lead to the
spin canting, and emphasize the need for an alternative
explanation of the experiment.

2. Crystal symmetry
and the intralayer spin interactions

CUEN crystallizes in the monoclinic symmetry with
the space group C2/c which is preserved at least down
to 0.4 K [1]. The room-temperature lattice parameters
are a = 7.23 Å, b = 11.73 Å, c = 9.77 Å, β = 105.5◦, and
Z = 4 [9]. The four translationally inequivalent Cu atoms
within the unit cell are denoted as A, B, C, andD. In the
following, the spins S = 1/2 located on the Cu atoms are
denoted by their standard symbol S, or by A, B, C, D
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Fig. 1. Crystal structure of CUEN. The four transla-
tionally inequivalent Cu atoms within the unit cell are
denoted as A, B, C, and D. The axis c′ lies in the
ac-plane and is orthogonal to a and b axes. The two
major (antiferromagnetic) exchange interactions found
by ab initio studies [3], J and J ′, lie in the bc-layers.
(Reproduced with permission from Ref. [2]).

when a distinction between the four sublattices becomes
necessary. The major spin interactions suggested by ab-
initio studies [3] occur within the basal (A, B spins)
and middle bc-layers (C, D spins) where the symmetry
precludes the existence of DMI [2] (Fig. 1).

The isotropic exchange interaction between the near-
est neighbors within the bc-layer takes J and J ′ values,
whereas the SEA is described by four (symmetric) matri-
ces. Assuming the spins to be spatially uniform on each
sublattice, most of the off-diagonal elements average out
to zero. The rest can be diagonalized by a suitable rota-
tion around the b-axis [2]. This rotation defines the new
orthogonal axes 1, 2, 3, with 2 ‖ b.

Interestingly, the axes 1 and 3 nearly coincide with
the a and c′ axes. Within the mean field theory,
the only effective parameters are the isotropic exchange
J̃ = 1

2 (J + J ′), and the in-plane G̃in and out-of-plane
G̃out anisotropies. The energy per spin in a magnetic
field H is then given as

WS = J̃A ·B − 1

2
gµBH(A+B)

−G̃inA3B3 − G̃outA1B1, (1)
where g is the usual g-factor, J̃ > 0, and µB is the Bohr
magneton. The components of A (B) spins along the
axes 1, 3, respectively, are denoted as A1 and A3 (B1

and B3), respectively. Consistency with the experiment
requires G̃out > G̃in > 0. The values ˜̃Gin,

˜̃Gout (≈ 10−3J̃)
are directly related to the q = 0 magnon gaps [2, 7].
Spin interactions in the middle bc-layers are completely
isomorphic. The corresponding energy is obtained from
(1) by A → C, B → D. For H = 0, above equa-
tion is minimized by the collinear spins A, B. Even
more transparent formulation of (1) can be obtained in
terms of the “uniform magnetization” m = (A+B)/(2s),
and the “staggered magnetization” n = (A − B)/(2s).
If gµBHs� J̃ , weak anisotropies imply |m| � |n|.
Here, m can be treated as small quantity of order ε.
Then, to leading order, m · n = 0, n2 = 1. It is
useful to introduce rescaled (dimensionless) parameters

gin = 2G̃in/ε
2J̃ , gout = 2G̃out/ε

2J̃ , and magnetic field
parameter h = gµBH/(2sεJ̃), which are all of the order
of unity. Then, the rescaled energy per spin wS (in units
of s2ε2J̃), and m can be expressed entirely in terms of
n, namely

wS =
[
goutn

2
1 + ginn

2
3 + (n · h)2

]
/2,

m = −ε
2
[n× (n× h)] . (2)

The energy of the pure Néel state is removed from (2).
One may fix ε by, e.g. setting gin = 1, which in turn
sets the (rescaled) spin-flop field hSF = 1. At h = 0,
wS is minimized by n2 = ±1 and m = 0. This indicates
the lack of intrinsic spin canting mechanism within the
bc-layers.

3. Interlayer interactions

3.1. Interlayer couplings along the ab-planes

We now discuss the interlayer interactions between the
nearest neighbors (NN) within the ab-planes, (i.e., the
spin pairs A, C, and B, D in Fig. 2). We assume the
modification of the 2D interactions introduced in Sect. 2
to be of the form

W⊥ =
∑
〈〈kl〉〉

[Jkl (Sk · Sl) +Dkl · (Sk × Sl)

+
∑
i,j

Kij
kl

(
Si
kS

j
l + Si

lS
j
k

) , (3)

where 〈〈kl〉〉 is an interlayer NN spin pair. We state our
results in the aforementioned coordinate frame 1, 2, 3
of Sect. 2. The isotropic exchange takes a single value
Jkl = J⊥ for all NN neighbors in the ab-planes. The
SEA is described by two symmetric matricesKI andKII ,
whose distribution over the lattice is shown in Fig. 2:

KI =

 K11 K12 K13

K12 K22 K23

K13 K23 K33

 ,

KII =

 K11 −K12 K13

−K12 K22 −K23

K13 −K23 K33

 . (4)

Finally, DMI are indeed present, as anticipated in [1],
and are restricted to the two vectors, see Fig. 2:

DI = (D1, D2, D3),

DII = (D1,−D2, D3). (5)
Note that the sign of the DMI vectors is opposite for the
A, C, and B, D spins.

The isotropic exchange contributes to the total en-
ergy as J⊥ (A ·C+B ·D). Using the interlayer stag-
gered magnetization defined in Sect. 2, this contribu-
tion can be, to leading order, rewritten as J⊥(nL · nU ).
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Fig. 2. Distribution of the DMI vectors and the SEA
matrices on a portion of the ab-plane. The arrows indi-
cate the order of spins in the cross product of (3). The
indices α, β advance along the crystal axes a, b. The
index γ along the axis c is identical for all displayed
spins and is omitted. Spin interactions between the
spins B, D may be obtained by replacing in this figure
the sublattice symbols A→ B, C → D, and simultane-
ously reversing the sign of all DMI vectors DI → −DI ,
DII → −DII .

The subscripts L and U distinguish between the in-
tralayer staggered magnetizations in the basal and the
middle bc-planes. J⊥ is expected to be of the order of the
intralayer SEA [8]. Its role at low-temperatures is mainly
to affect the mutual spin orientations (chooses between
parallel/antiparallel order) in the adjacent bc-layers, and
does not lead to the departure from the collinear order.
The same holds for the diagonal contribution of the in-
terlayer SEA of (4). Concerning the off-diagonal SEA,
K12, K23 are within the mean-field theory averaged
out to zero. In principle K13 can also be eliminated
by diagonalization as in Sect. 2, however both the
intralayer and the interlayer off-diagonals cannot be
eliminated simultaneously. Its contribution reduces to
K13 (A1C3 +A3C1 +B1D3 +B3D1) or, to leading or-
der, K13 (nL1nU3 + nL3nL1). It does not appear to pro-
duce spin canting at zero field. In particular, it does not
couple to the component along the axis 2. The ground
state certainly comprises of sizable component along
this axis.

Concerning the DMI, the inspection of Fig. 2 makes
it clear that, for the spins uniform on each sub-
lattice, the DMI contribution is actually zero, with
no weak-ferromagnetism. This is also supported by the
fact that weak ferromagnetism requires the DMI vector
to alternate in sign on opposite bonds [10]. The lack
of such alternation indicates a possible occurrence of he-
limagnetism — the collective rotation of spins, but it is
unlikely to occur when J⊥ � J̃ . The chirality (the sign of
the DMI) for A, C and B, D spins is opposite. They are
set to rotate in opposite sense. Then the mutual orienta-
tion of, say, A and B would necessarily vary throughout
the lattice. In contrast, strong J̃ requires that A and B
remain nearly antiparallel all the time. Incommensurate
magnetism could in principle occur if J̃ � J⊥. Then the
DMI is comparable to J̃ , being strong enough to over-
come energetically unfavorable configurations [11].

3.2. Interlayer couplings along the ac-planes

We have also examined the interactions between
the nearest and the next-nearest neighbors along the
ac-planes. Our symmetry analysis revealed that only
symmetric exchange anisotropies are present, and DMI is
precluded by symmetry. However, the structure of SEA
is similar to those already explicitly presented, and does
not bring in any new qualitative elements.

4. Conclusions

We have studied the interlayer spin interactions in the
antiferromagnet CUEN. We have confirmed the pres-
ence of antisymmetric interlayer exchange interactions,
and examined them in detail. We found that the
Dzyaloshinskii–Moriya interactions do not lead to weak-
ferromagnetism of any type. Instead, they admit the ex-
istence of helimagnetism, whose actual occurrence, how-
ever, is not favored by the system parameters. Similarly,
the structure of symmetric exchange interactions does
not indicate any obvious spin canting mechanism. The
explanation of the experimental results thus requires ad-
ditional effort.
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