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Residual Entropy and Low Temperature Pseudo-Transition
for One-Dimensional Models
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Here we report an intrinsic relationship between the zero temperature phase boundary residual entropy and
pseudo-transition. Usually, the residual entropy increases at the phase boundary, which means the system gains
accessible states in the phase boundary compared to its adjacent states, although it is not always the case. There-
fore, we propose the following statement at zero temperature. If the residual entropy is continuous at least from
the one-sided limit, then the analytical free energy exhibits a pseudo-transition at low temperature. For illustrative
purpose, our argument is applied to a frustrated coupled double tetrahedral Ising–Heisenberg chain to show the
pseudo-transitions behaviors due to the phase boundary residual entropy continuity.
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1. Introduction

In 1950, van Hove [1] verified the absence of a phase
transition for a short-range interaction and uniform one-
dimensional system. Using the transfer matrix technique,
we can get the free energy, which must be an analyt-
ical function, thereby establishing a theorem to prove
that one-dimensional models with short-range coupling
do not exhibit any phase transitions. Later, Cuesta and
Sanchez [2] generalized the theorem of non-existence of
phase transition at finite temperatures by including an
external field and considering point-like particles. It
broadens the non-existence theorem, but it is far from
being a sufficiently general theorem.

On the other hand, the term “pseudotransition” was
introduced by Timonin [3] in 2011 while studying a spin
ice in a field, and refers to a sudden change in the first
derivative of the free energy, while a sharp vigorous peak
appears in the second derivative of the free energy, al-
though there are no discontinuity or divergence. The
pseudotransition does not violate the Perron–Frobenius
theorem [4], because the free energy is analytic.

To illustrate this behavior better, let us consider a dec-
orated model [5, 6] that can be mapped in a simple
spin-1/2 Ising-like model with Hamiltonian

H = −
N∑
i=1

[
K0 +Ksisi+1 +

1

2
B(si + si+1)

]
, (1)

where K0, K, and B are effective parameters which
in general could depend on temperature, and N de-
notes unit cells. The corresponding transfer matrix is
expressed by

V =

[
w1 w0

w0 w−1

]
,
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as discussed in [5]. Each element of transfer matrix is
given by

wn =
∑
k=0

gn,k exp (−βεn,k) . (2)

Here, εn,k represent the energy spectra, where
k = {0, 1, . . .} for each n, while gn,k denotes its corre-
sponding degeneracy gn,k = {1, 2, 3, . . . }. Coefficient
β = 1/(kBT ), where kB is the Boltzmann constant, and
T is the absolute temperature.

Consequently, the free energy in the thermodynamic
limit (N →∞) becomes

f = − 1

β
ln

(
1

2
(w1 + w−1) +

1

2

√
(w1 − w−1)2 + 4w2

0

)
.

(3)
When w0 = 0, Eq. (3) indicates the presence of a genuine
finite temperature phase transition at w1 = w−1.

The organization of this report is as follows. In Sect. 2
the critical residual entropy is presented. In Sect. 3, we
study for a double tetrahedral Ising–Heisenberg chain.
Finally, in Sect. 4, we present our conclusions.

2. Phase boundary residual entropy

Let us assume that the energies ε1,0 and ε−1,0 are
the lowest energies for n = 1 and n = −1, respectively,
and depend on control parameter x, e.g. magnetic field.
Thus, the energies ε1,0(x) and ε−1,0(x), in the critical
point become ε1,0(xc) = ε−1,0(xc) = εc, with its cor-
responding critical degeneracies at phase boundary as
g1,0 and g−1,0. The lowest energy, for n = 0, satisfies
ε0,0(xc) > εc, when w̄0 → 0. Thus, the free energy
around the phase boundary becomes

f = − 1

β
ln

(
1

2
(g1,0 + g−1,0 + |g1,0 − g−1,0|) e−βεc

)
=

εc −
1

β
ln (max (g1,0, g−1,0)) . (4)

Next, we can obtain the corresponding critical residual
entropy,
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Sc = ln (max (g1,0, g−1,0)) , (5)
and from now on, we will consider the entropy in units
of kB. The critical degeneracy per unit cell results in
Gc = max (g1,0, g−1,0).

It is worth mentioning that, according to the third law
of thermodynamics or Nernst’s postulate: The entropy
goes to a constant when T → 0, and must be independent
of any thermodynamic variables such as x.

First, let us assume g1,0 = g−1,0, then the residual en-
tropy is lim

x→x±
c

S(x) = S(xc) = Sc. When g−1,0 < g1,0, we

have lim
x→x−

c

S(x) < limx→x+
c
S(x) = Sc. Second, we have,

Sc = max (g1,0, g−1,0), then limx→x±
c
S(x) < S(xc) = Sc.

In summary, if the residual entropy is continuous at
least from the one-sided limit, then analytic free energy
exhibits a pseudotransition at low temperature.

Therefore, the pseudocritical temperature [5] can be
found using the following relation:

w1(xp, Tp) = w−1(xp, Tp), (6)
which corresponds to a pseudocritical point at xp and Tp.

3. Coupled tetrahedral Ising–Heisenberg chain

The Heisenberg version of the coupled tetrahedral
Heisenberg chain was considered in Ref. [7, 8]. Re-
cently, the Ising–Heisenberg tetrahedral chain has been
discussed in [9, 10]. Here we consider a slightly different
model (see Fig. 1), and we focus on the pseudotransition
property. Thus, the Hamiltonian of the model is

H = −
N∑
i=1

{J(Sa,i,Sb,i)z + J(Sb,i,Sc,i)z

+J(Sc,i,Sa,i)z +
h

2
(σi + σi+1)

+
(
Sza,i + Szb,i + Szc,i

)
[h+ J0 (σi + σi+1)]

}
. (7)

Here, J(Sa,i,Sb,i)z ≡ JSxa,iSxb,i + JSya,iS
y
b,i + JzS

z
a,iS

z
b,i,

where Sαa,i denotes the Heisenberg spin-1/2 with
α = {x, y, z}, while σi denotes the Ising spin (σi = ± 1

2 ).
Analogous definitions are used for sites b and c. It is
noteworthy that J and Jz correspond to the exchange in-
teraction between the Heisenberg spin, J0 stands for the
Ising–Heisenberg coupling, and h = gµBB/kB denotes
magnetic field along the z-axis. Then all quantities are
in units of kB, and consequently, the amounts mentioned
above must be measured in kelvin.

Fig. 1. Schematic representation of coupled tetrahe-
dral Ising–Heisenberg chain.

To analyse the phase diagram at zero temperature, we
will discuss some relevant states below.

First, we report the ground state of the saturated
phase (SA) as

|SA〉 =

N∏
i=1

∣∣∣++
+

〉
i
|+〉i,

with mI =
1

2
, mH =

1

2
and mt = 2. (8)

Similarly, the ground state for ferrimagnetic (FI) phase
can be expressed as

|FI〉 =

N∏
i=1

∣∣∣++
+

〉
i
|−〉i,

with mI = −1

2
, mH =

1

2
, and mt = 1. (9)

The next phase we consider is a frustrated phase,
given by

|FR1〉 =

N∏
i=1

∣∣∣∣12 ,−1

2

〉
i

|+〉i,

with mI =
1

2
, mH = −1

6
and mt = 0, (10)

where∣∣∣∣12 ,−1

2

〉
≡ 1√

6

(∣∣∣−−
+

〉
− 2

∣∣∣−+
−

〉
+
∣∣∣+−
−

〉)
or
∣∣∣∣12 ,−1

2

〉
≡ 1√

2

(∣∣∣−−
+

〉
−
∣∣∣+−
−

〉)
.

The other frustrated ground state energy is

|FR2〉 =

N∏
i=1

∣∣∣∣12 ,+1

2

〉
i

|+〉i,

with mI =
1

2
, mH =

1

6
and mt = 1. (11)

where∣∣∣∣12 +
1

2

〉
≡ 1√

6

(∣∣∣++
−

〉
− 2

∣∣∣+−
+

〉
+
∣∣∣−+
+

〉)
or
∣∣∣∣12 ,+1

2

〉
≡ 1√

2

(∣∣∣−+
+

〉
−
∣∣∣++
−

〉)
.

In Fig. 2a, the phase diagram is shown at zero tempera-
ture. The CRE between FR1 and FR2 is Sc = ln(3+

√
5),

in units of the Boltzmann constant. In the interface be-
tween FR1 and FI we have Sc = ln(3). In the same way,
the CRE between FI and SA is Sc = ln(2), whereas at the
boundary between SA and FR2 we have Sc = ln(3). All
the above critical residual entropies are discontinuous,
indicating the absence of the pseudotransition at finite
temperature (see Fig. 2b). Finally, the critical residual
entropy in the interface of FI and FR2 described by a red
solid line is given by Sc = ln(2). Therefore, we can af-
firm that this boundary should lead to a pseudotransition
(see Fig. 2b).
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Fig. 2. (a) Zero temperature phase diagram in the
plane of Jz–h, assuming fixed parameters J = −10 and
J0 = −10. (b) Entropy density plot for temperature
T = 0.6, assuming the same set of parameters consid-
ered in (a). Here the prefix letter “q” is to assign the
quasi-phases.

Fig. 3. Entropy as a function of Jz assuming fixed
J = −10, J0 = −10, for a range of temperature,
T = {0.2, 0.5, 1.0, 1.5, 2.0} (inner to outer curve): (a) for
h = 20, and (b) for Jz = −20. Density plot of entropy
for fixed J = −10, J0 = −10: (c) in the plane Jz–T for
h = 20, and (d) in the plane h–T for Jz = −14.6.

To study the thermodynamics of the present model,
the Boltzmann factor (n = {−1, 0, 1}) can be expressed
as

wn = 2 exp

(
β

4
(2nh− Jz)

)
×
[(

eβJ + 2e−
1
2βJ
)

cosh

(
β
J0 + hz

2

)
+eβJz cosh

(
3β
J0 + hz

2

)]
, (12)

In Fig. 3a the entropy is shown as a function of Jz in the
low-temperature region, where we can observe the critical
residual entropy between FR2 and FI as Sc = ln(2), and

this amount remains almost constant up to T . 1. This
is because the entropy is continuous from the one-sided
limit at phase boundary. In Fig. 3b the entropy is plot-
ted as a function of h, where we observe that the residual
entropy peaks Sc = ln(4) and Sc = ln(2) that occur for
h = 10 and h = 30, respectively. In Fig. 3c we observe
well distinct regions up to T . 1, and for higher temper-
ature the boundary becomes blurry. Similarly, in Fig. 3d
there is a sharp boundary for T ≈ 0.6 and 15 . h . 25.
Outside this region thermal excitation destroys any trace
of phase transition at zero temperature.

4. Conclusions

Usually, the residual entropy increases in the interface
where the phase transition occurs. However, there are
some peculiar cases where the critical residual entropy
is equal to the largest residual entropy of neighboring
states, which is given by Sc = ln(max(g1,0, g−1,0)). We
can apply this condition at zero temperature, and search-
ing for the continuity of entropy would be an easier task
when compared to the study of full thermodynamic quan-
tities. To show this property, we have considered a double
tetrahedral Ising–Heisenberg chain.
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