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TmB4 is an anisotropic magnetic system with geometrical frustration of Shastry-Sutherland type. Experimen-
tally, it was the rotating magnetocaloric effect (R-MCE) of TmB4 evaluated from measurements of temperature
dependences of heat capacity in various magnetic fields and crystallographic orientations. R-MCE in this system
shows a complex behavior of the adiabatic temperature change (AdT) — cooling above TN and two heating regions
in ordered phase [1]. In this contribution, a theoretical model with spin-electron Hamiltonian was suggested to
explain the complex AdT behavior. The model is based on the idea of two interacting subsystems: the localized
spins of rare earth ions, and the itinerant electrons in conduction band. The received results from Monte Carlo ap-
proach successfully reproduce the observed heating and cooling regions. Thus, our study shows that measurements
of R-MCE can be an effective tool for investigation of the microscopic properties of magnetization processes.
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1. Introduction

The magnetocaloric effect (MCE) is a magneto-
thermodynamic phenomenon in which temperature vari-
ation in magnetic material is caused by the change
of external magnetic field [1–3]. It was also shown
that geometrical spin frustration significantly enhances
the change of magnetic entropy in applied magnetic field,
and thus intensify the MCE [1, 4]. In the case of strongly
anisotropic systems the rotating magnetocaloric effect
(R-MCE) can be used, as proposed and investigated
in [1, 2, 5, 6]. However, the MCE can be also obtained in
anisotropic systems by simply rotating the magnetic re-
frigerant in constant field instead of moving it in and
out of the magnet [1]. Thulium tetraboride (TmB4)
is an anisotropic geometrically frustrated magnetic sys-
tem. It belongs to the group of rare earth tetraborides
(REB4) that crystallize in a tetragonal lattice. As one
of the three valence electrons of rare earth RE3+ ions
goes to the conduction band, these tetraborides are good
metals, and the interaction between the localized mag-
netic ions and the itinerant conduction electrons is play-
ing an important role [1]. In case of TmB4 the magnetic
Tm3+ ions have a 4f12 configuration with an angular
momentum J = 6. In the mentioned tetragonal lattice
the Tm ions lie in sheets perpendicular to the c-axis, and
can be within the a–b plane mapped onto the frustrated
Shastry-Sutherland lattice, which can be viewed in terms
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of squares and equilateral triangles [1, 7]. Between these
Tm sheets there are planes of boron atoms grouped into
B6 octahedra and dimer pairs. Crystal field effects at
Tm3+ sites lift the degeneracy of J = 6 multiplet. Con-
sequently, the ground state is a doublet MJ = ±6, which
induces a strong Ising-like magnetic anisotropy with mag-
netic moments of Tm ions oriented along the c-axis below
its Néel temperature TN = 11.7 K. In the ordered an-
tiferromagnetic state the magnetization M for magnetic
fieldsB ‖ c reaches saturationMS at about 4 T accompa-
nied by magnetization plateaus at 1

2MS and 1
8MS [1, 7].

On the other hand, for fields B ⊥ c the saturation of
M is reached only at fields above 30 T [1, 8]. Thus, it
follows that in magnetic fields up to about 4 T the magne-
tization along the c-axis is considerably higher than this
in the perpendicular direction which is advantageous for
the emergence of the R-MCE [1]. Recently, the R-MCE
in TmB4 was experimentally evaluated [1]. According to
reported procedure, at first temperature dependencies of
heat capacity C(T,B) at various fields were measured in
orientations B ‖ c and B ⊥ c up to 4.8 T. It was shown
that due to the high anisotropy of TmB4 the heat capac-
ity in B ⊥ c was field independent (up to 4.8 T). Then,
the entropy distributions S(T,B) were calculated in both
field orientations using the well known formula [1]:

S(T )H =

T∫
0

C(T )H
T

dT + S0,H . (1)

The entropy distribution in the field direction B ⊥ c are
straight lines along B axis (CB⊥c(T ) does not depend
on B), see [1]. On the other hand, the entropy map in
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Fig. 1. Entropy distribution for B ‖ c calculated from
temperature dependencies of heat capacity C(T,B) [1].

Fig. 2. Layout of the adiabatic temperature change
AdT(T,B) determined from S(T,B) distributions
using (2) [1].

the field direction B ‖ c shows much more complexity,
see Fig. 1. Note that the contours of the entropy dis-
tribution for B ‖ c display rather well the B–T phase
diagram of TmB4. The B–T phase diagram, as well as
details of measurement and entropy calculations can be
found in [1].

Next, the adiabatic temperature change AdT can be
calculated using the formula [1]:

AdT(T,B) = T (S)B⊥c − T (S)B‖c. (2)
Distribution of AdT given by (2) is shown in Fig. 2 (for
full range plot up to 60 K, see [1]). It exhibits a large cool-
ing region above TN (around 20 K and in fields above 2 T)
in which the temperature of TmB4 during the rotation
decreases by more than 9 K (this cooling procedure is
analogous to the conventional demagnetization process
in the paramagnetic region). But, there is also a posi-
tive (warming up) area below TN (around 5 K at 1.8 T
and 4.2 T), where the temperature increases by more

than 2.5 K when the sample is rotated from B ‖ c
to B ⊥ c, and which is related with heating at magnetic
reversal in the ordered state [1]. In our contribution, we
present the microscopic description of observed heating
and cooling phenomenon.

2. Model

For data interpretation the used model was proposed
for explanation of magnetization processes in rare-earth
tetraborides [9]. It is based on the idea of two interact-
ing subsystems: the localized spins of rare earth ions, and
the itinerant electrons in the conduction band. The lo-
calized spins are described by following Hamiltonian [9]:

HJ1J2 = J1
∑
ij

Szi S
z
j + J2

∑
ij

Szi S
z
j − h

∑
i

Szi , (3)

which describes interactions of the localized spins Szi with
the first and second nearest neighbors on the SSL with in-
teraction strengths J1, J2, and external magnetic field h.
Taking into account the conduction electrons this “start-
ing” Hamiltonian was expanded with additional terms [9]:

H =
∑
ijσ

tijd
†
iσdjσ + Jz

∑
i

(ni↑ − ni↓)S
z
i

−h
∑
i

(ni↑ − ni↓) +HJ1J2 , (4)

where d†iσ , diσ are the creation and annihilation oper-
ators of the itinerant electrons in the d-band Wannier
state at site i, and niσ = d†iσdiσ. The first term of (4)
describes the kinetic energy of the itinerant d electrons,
that can move between sites via the hopping mechanism.
The probability of the intersite transition is described by
matrix elements tij , which are −t if i and j are the near-
est neighbors, −t′ if i and j are the next-nearest neigh-
bors from the SSL, and zero otherwise. The electron
and spin subsystems interact only via the spin-dependent
Ising interaction Jz, which is represented by second term.
The third term is an interaction between the external
magnetic field and the itinerant electrons [9]. With
the use of Monte Carlo (MC) approach, we were able to
solve (4) numerically. From the MC simulation temper-
ature dependencies of the heat capacity at various fields
(in B ‖ c direction) were obtained. It should be noted
that the lattice contribution to the heat capacity was
neglected, because the results of the model and the ex-
periment will be compared only at low temperatures,
where magnetic and electron contributions are dominant.
The heat capacity in the B ⊥ c direction was obtained
with the following approach. Supposing that the system
is infinitely anisotropic (saturation field in B ‖ c is 4 T,
while in B ⊥ c it is more than 30 T [8]), the field ef-
fectively acting on the system will be a projection of B
into c axis. In the case of B ⊥ c for any value of field
projection in c axis is zero. This approach yields the re-
sult that the heat capacity for any non-zero field will be
same as the heat capacity in zero field. In the zero field
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Fig. 3. Entropy distribution for B ‖ c calculated from
temperature dependencies of heat capacity obtained
from model (4).

Fig. 4. Layout of the adiabatic temperature change
AdT(T,B) determined from theoretical S(T,B) (Fig. 3)
distributions using (2).

the heat capacity is independent of field orientation so
CB⊥c(T,B) = CB⊥c(T,B = 0). The R-MCE evaluation
procedure was same as in experimental case. The entropy
distribution in Fig. 3 was calculated using (1).

The entropy distribution (Fig. 3) behaves qualita-
tively the same as one obtained from the experiment
(see Fig. 1). Also, the contour of the experimental B–T
phase diagram is visible. The noise that is present
here, is probably caused by the finite lattice size effects
and the numerical errors. The distribution of AdT was
calculated using (2), and it is shown on Fig. 4.

Comparing the theoretical (Fig. 4) and experimental
distribution (Fig. 2) of AdT, one can observed a qual-
itative match: one cooling region at higher tempera-
tures and two heating regions at lower temperatures.
Again the finite lattice size effects, and numerical errors
manifest as noise especially at low temperatures.

3. Conclusions

In summary, we have applied the electron-spin model,
used previously for explanation of magnetization pro-
cesses in rare earth tetraborides, to qualitatively de-
scribe the R-MCE in TmB4. From the model simulation
the heat capacity data were obtained. Using the same
procedure of evaluation of R-MCE as in the experimen-
tal case, the distributions of entropy and AdT were calcu-
lated. Comparing theoretical results with experimental
ones, the qualitative match was achieved, which justifies
used model and methods.
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