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Magnetic shape memory alloy is a new class of smart metallic materials, which has excellent characteristics of
huge strain and fast response. These characteristics make magnetic shape memory alloy-based actuator a potential
alternative to replace traditional actuators in the high-precision positioning applications. However, the magnetic
shape memory alloy-based actuator has not found its way into micro positioning field due to the obvious hysteresis
behavior. In this paper, we present the prototype of the magnetic shape memory alloy-based actuator, and
analyze the complex hysteresis nonlinearity between the input signal and output displacement. Then, dynamic
fuzzy neural network is first utilized to construct hysteresis model for the magnetic shape memory alloy-based
actuator. Dynamic fuzzy neural network is a fuzzy-logic based neural network system, which has the capability
of approximating nonlinear mapping and self-adjustment. Experimental results confirm the effectiveness of the
proposed hysteresis model.
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1. Introduction

Recently, the intelligent materials are widely utilized
in modern manufacturing, among which magnetic shape
memory alloy (MSMA)-based actuator has a promis-
ing prospect in the field of nanopositioning. However,
MSMA-based actuator suffers from the inherent hystere-
sis nonlinearity, which is a phenomenon between the in-
put signal and output displacement, and impedes its fur-
ther application [1]. Some scholars have made explo-
rations about MSMA-based actuator. Visone et al. [2]
established the Preisach model for the MSMA-based ac-
tuator. KP model based on Elman neural network was
suggested in [3] to describe the asymmetric hysteresis
loops. For other intelligent material-based actuators, var-
ious modeling methods have been developed [4]. How-
ever, there are still few niche modeling approaches to
describe the hysteresis behaviors (amplitude-dependent
and rate-dependent) in the MSMA-based actuator.

In this paper, dynamic fuzzy neural network
(D-FNN) [5] is employed to describe the hysteresis in
the MSMA-based actuator due to its excellent approx-
imating ability. D-FNN can adjust its parameters and
structure simultaneously via the learning algorithm de-
veloped in [6], hence the over training phenomena in the
modeling process can be avoided. Experimental results
show that D-FNN model has prominent performance to
describe the hysteresis of MSMA-based actuator.
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2. Experimental characteristics
of the MSMA-based actuator

The hysteresis dynamics of MSMA-based actuator is
related to the frequency of its applied input, that is, the
dynamical behavior has a noticeable variation when the
input frequency is changing. This is an inherent property
called rate-dependent behaviour, as shown in Fig. 1a.
Furthermore, the output of MSMA-based actuator de-
pends on not only the current value but also on the pre-
vious dominant extremum of input, which results in the
amplitude-dependent behaviour, as shown in Fig. 1b.

3. D-FNN hysteresis modeling
for the MSMA-based actuator

The input-output relationship of the MSMA-based ac-
tuator is expressed as
yp(k) = Γ (u(k), . . . u(k − nu), yp(k − 1), . . . yp(k − ny)),

(1)
where yp(k) and u(k) are the displacement and input cur-
rents of the MSMA-based actuator, and ny and nu are
the corresponding maximum lags of yp(k) and u(k). Γ (·)
represents the nonlinear function. For the sake of con-
venience, the input signal can be rewritten as Z(k) =
[u(k), . . . u(k−nu), yp(k−1), . . . yp(k−ny)] = [z1, . . . zj ],
j = 1, . . . p. p = nu + ny +1 is the total number of input
variables. Due to its remarkable approximation ability,
D-FNN is used to model the nonlinear function Γ (·), and
the architecture is depicted in Fig. 2. The output of the
D-FNN is given as

(660)
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Fig. 1. Hysteresis nonlinearity of the MSMA-based ac-
tuator: (a) rate-dependent behavior, (b) amplitude-
dependent behavior.

Fig. 2. Architecture of the D-FNN model.
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(3)
where σji and Ci = [c1i, . . . cpi] are the width and center
of Gaussian function in the i-th rule, respectively.

The dynamic learning algorithm for D-FNN is com-
posed of four parts: criteria of rule generation, param-
eters allocation of membership function, weight adjust-
ment, and pruning technology. Specifically, the rule gen-
eration is decided by ||e(k)|| and dmin, and they are de-
fined as:{

dmin = argmin(||Z(k)−Ci||)
||e(k)|| = ||yp(k)− y(k)||

(4)

For the k-th data (Z(k), y(k)), only in the case of
{||e(k)|| > max[emax × βk, emin], dmin > max[dmax ×
γk, dmin]}, the system will add a rule automatically.

emax, emin, dmax, dmin, β, γ are the predefined con-
stants. Parameters of Gaussian function is decided by
σji(k) = kw × σji(k − 1) and kw is a constant. The
weight adjustment and pruning technology are achieved
by recursive least squares (RLS) and error reduction ratio
(ERR) methods, respectively.

4. Experimental results

Hysteresis experiments of MSMA-based actuator are
carried out on the experimental platform shown in
Fig. 3a. An exciting signal u is fed into the power through
PCI-1716, and the signal ua from this power is yielded
to drive the MSMA-based actuator. Then the displace-
ment ya is measured by linear variable differential trans-
former (LVDT), the obtained signal y is transferred to
host computer via PCI-1716. The configuration is shown
in Fig. 3b. The MSMA-based actuator (MSM 20-E, ETO
GRUPPE company) consists of MSMA element, a force
spring, coils, and a push-rod. The MSMA element in the
MSMA-based actuator is a NiMnGa alloy and the dimen-
sion is 14 mm×3 mm×2 mm. The exciting signal ua is
applied to the coils in the MSMA-based actuator and the
magnetic field is obtained. The hysteresis effect is gener-
ated by this field. The specifications of LVDT and power
are MDSL-0500M6-1A and PSW30-36, respectively.

Some basic parameters for constructing the D-FNN
model are chosen as dmax = 100, dmin = 0.2, emax = 0.1,
emin = 0.02, β = 0.9, γ = 0.9, kw = 1.1, nu = 1,
and ny = 1. With this model structure, the MSMA-
based actuator is fed with an exciting sinusoid signal
of u(t) = 1.2 sin(2πft) + 2.2 (frequency f = 0.2, 2,
6 Hz) with different amplitudes. The modeling per-
formance is shown in Fig. 4. It is obvious that the

Fig. 3. Experimental platform of MSMA-based actua-
tor: (a) picture, (b) configuration.



662 Miaolei Zhou, Chen Zhang, Yewei Yu, Shouchun Wang

Fig. 4. Modeling performances of the D-FNN model
with 0.2 Hz sinusoid exciting signal are shown in (a)
and (c), with 2 Hz in (b) and (d), with 6 Hz in (e) and
(g), and with mixed signal in (f) and (h), respectively.

rate-dependent and amplitude-dependent characteristics
of MSMA-based actuator are inherently implemented
by the proposed method. More precisely, the root
mean square (RMS) errors at f ∈ {0.2, 2, 6} Hz are
{0.0714, 0.3713, 0.8932} µm, respectively, which indicate
that the model has a good ability to fit the hysteresis be-
havior of the MSMA-based actuator. To establish further
evidences of the availability and validity of the proposed
approach, a mixed signal is applied to excite the MSMA-
based actuator. As described in Fig. 4f and h, the RMS
error is 0.2352 µm and the D-FNN model can reflect the
hysteresis behavior.

5. Conclusion

In this paper, a D-FNN model is proposed to char-
acterize the hysteresis nonlinearity in the MSMA-based
actuator. Then the theory and structure of the D-FNN
model are illustrated. A series of experiments are con-
ducted to verify the effectiveness of the D-FNN model for
describing the complex hysteresis behaviors. When the
input signal is different, the RMS error can satisfy the
requirement of modeling accuracy. Experimental results
demonstrate that the developed approach is feasible and
superior for hysteresis modeling.
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