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Brownian Motion of Charged Particles in a Bath
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We consider the Brownian motion in a constant magnetic field. Unlike in the previous theories, both the
Brownian particle and the surrounding bath particles, if they are charged, respond to the external field. The bath
particles are regarded as harmonic oscillators interacting with the Brownian particle. The derived equations of
motion for the Brownian particle have a form of generalized Langevin equations. For the motion in the plane
perpendicular to the field, two coupled equations for the Brownian particle velocity projections are obtained. Un-
der the condition of stationarity, the velocity correlation functions are determined by the memory functions of the
system. The second fluctuation-dissipation theorem is proved. It has the familiar form, but here the thermal noise
depends on the magnetic field.
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1. Introduction

The Brownian motion of particles is effectively de-
scribed by the stochastic Langevin equations of motion
which, along with external forces, contain forces origi-
nating from random impacts of surrounding molecules.
The case where the time scale of the molecular motion is
not very much shorter than that of the Brownian particle
(BP) corresponds to the generalized Langevin equation
(GLE). For this case Kubo [1] derived the so-called sec-
ond fluctuation-dissipation theorem (FDT). He assumed
that the bath particles surrounding the BP are unaffected
by the external field. Recently, it was discussed in [2] that
such an approach is not realistic and there are a number
of physical problems, where not only the tagged BP but
also the particles are subjected to the oscillating electric
field. In Ref. [3] it has been shown by computer simula-
tions that if the dynamics of a methane molecule solvated
in water and subjected to a harmonic potential is mod-
eled by the GLE, the memory function and the thermal
noise due to the FDT driving the methane molecule are
necessarily affected by the external field. In Ref. [4] we
have abandoned the Kubo assumption [1] that the ex-
ternal force does not affect the random force in the GLE
and derived the second FDT. By modifying the Caldeira–
Legget particle-bath model [5] we found a new form of
the GLE in the case when both the BP and the bath par-
ticle dynamics are affected by the external confinement
potential. In such GLE the memory function explicitly
depends on the elasticity constant of the potential.
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In the present contribution, we develop the theory in
which the observed BP and the surrounding bath parti-
cles both can respond to the external magnetic field. The
charged bath particles are regarded as harmonic oscilla-
tors interacting with the BP. Equations of motion are
derived for the BP. Along the vector of magnetic induc-
tion, where there is no effect of the field on the particles’
motion, the same GLE is obtained as it follows from the
theory [5, 6]. For the motion across the field, two coupled
stochastic equations are obtained for the particle veloc-
ity projections on the plane perpendicular to the field.
The memory effect of the frictional forces is determined
by the coupling between the particle and the bath oscil-
lators and depends on the distribution of the oscillators’
natural and cyclotron frequencies. The stochastic forces
are, in general, coloured. Under the condition of station-
arity, we derive the velocity correlation functions (VCFs)
of the BP. Finally, the second FDT is proved. It has the
familiar form [1], but now the memory function depends
on the magnetic field. As an example, we choose the
Drude spectrum [5] for bath frequencies to describe the
memory effects in the dynamics of the BP.

2. Model for the Brownian motion
in a magnetic field

We consider a system containing a tagged particle
and a bath of small charged oscillators. The particle
is coupled to the oscillators that are not coupled to each
other. This coupling is a function of the frequency of
the oscillators. Within the linear approximation and in
the absence of the magnetic field, the equations of mo-
tion for the bath particles and the BP with the posi-
tions ri = (xi, yi, zi) and r = (x, y, z), and momenta
pi = (pxi, pyi, pzi) and p = (px, py, pz), respectively, have
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been derived by Zwanzig [6]. In this theory [5, 6], the sys-
tem is placed in a harmonic potential. Here we assume
that the system is in the constant external magnetic field
B oriented along the axis z. The bath particles of masses
mi carry charges qi and the charge of the BP of mass m
is Q. The equations of motion for such a system of par-
ticles are as follows:

ṙ =
p

m
, ṗ =

∑
i

mici

(
ri −

ci
ω2
i

r

)
+Qṙ ×B, (1)

ṙi =
pi
mi

, ṗi = −miω
2
i ri +micir + qiṙi ×B. (2)

Here ci are strengths of coupling between the BP and the
oscillators with eigenfrequencies ωi. Along the z axis the
motion of the particles is not affected by the magnetic
field and will be not considered here. The corresponding
GLE for a free BP is well known and studied in a number
of works.

To get the equations of motion for the BP in the plane
perpendicular to the field, one has to solve the equations
for the bath particle momenta pxi, pyi and substitute
the solutions xi, yi into the equations for the momenta
px and py. This can be effectively done by using the
Laplace transform (LT) of the time-dependent quanti-
ties, e.g., x̃(s) =

∫∞
0

dte−stx(t). So, if ỹi(s) obtained
from (2) is substituted by (1), one gets the uncoupled
equation for x̃i(s) and ỹi(s),(

s2 + ω2
i +

s2Ω2
i

s2 + ω2
i

)
x̃i(s) =

(
s+

sΩ2
i

s2 + ω2
i

)
xi(0)

+ẋi(0)−
ω2
iΩi

s2 + ω2
i

yi(0) +
sΩi

s2 + ω2
i

ẏi(0)

+cix̃(s) +
sciΩi
s2 + ω2

i

ỹ(s). (3)

A similar equation for ỹi(s) is obtained if all x are re-
placed by y and vice versa, and the cyclotron frequency
Ωi = qiB/mi is changed to −Ωi. The equations contain
initial positions of the oscillators, xi(0), yi(0), and their
initial velocities, ẋi(0), ẏi(0), all of which are random
quantities with zero mean. Now we substitute the solu-
tions for x̃i(s) and ỹi(s) in the LT of (1) and then return
to the time domain. The final equations for the BP have
the form

mυ̇x(t) = QBυy(t)−
t∫

0

υx(t
′)G(t− t′)dt′

+

t∫
0

υy(t
′)H(t− t′)dt′ + fx(t). (4)

A similar equation holds for υy(t) if x is changed to y,
Q to −Q, and H to −H. Here, fx(t) and fy(t) are in-
dependent zero-mean projections of the random force. It
is seen that Eqs. (4) are of the GLE type but with two
functions, G(t) and H(t), determining the memory ef-
fects in the BP dynamics. Denoting γi = (Ω2

i + 4ω2
i )

1/2

and γ±i = γi ± Ωi, G(t) is expressed as

Fig. 1. Time dependence of the memory functions nor-
malized to ξ/τ for qBτ/µ = 1 and q > 0. Blue and green
lines correspond to G(t) in the absence and presence of
bath response to the magnetic field, respectively. The
latter case is well described by the asymptote ∼ t−1/2.
H(t) is represented by the red line.

G(t) = 2
N∑
i=1

mic
2
i

γi

[
cos(γ+i t/2)

γ+i
+

cos(γ−i t/2)

γ−i

]
(5)

and in the equation for H(t) cos(. . . ) are just replaced by
sin(. . . ) with the second term in [. . . ] having the sign −.
For the correlation functions describing the random mo-
tion of the BPs (such as the VCF Cυυ(t) = 〈υ(0)υ(t)〉)
some general results can be obtained assuming that the
system is conditioned to be stationary. So, let us mul-
tiply Eq. (4) and a similar equation for υy(t) by υx(0)
and υy(0), respectively, and take the statistical average.
From the obtained equations for Cυαυα(t) (α = x, y),
Cυxυy (t) = 〈υx(t)υy(0)〉, and Cυyυx(t) = 〈υy(t)υx(0)〉
with Cυxυy (0) = 0, we again turn to the LT. With
the commonly used causality principle due to which
〈υα(0)fα(t)〉 = 0 for t > 0, the convolution theorem,
and equipartition, Cυαυα(0) = kBT/m, we find the VCF

C̃υαυα(s) = kBT
ms+ G̃(s)

[ms+ G̃(s)]2 + [QB + H̃(s)]2
. (6)

The expression for C̃υxυy (s) = −C̃υyυx(s) differs only
by the numerator, which is QB + H̃(s). These func-
tions are related to all other relevant correlation func-
tions, such as the positional autocorrelation function
Cxx(t) = 〈x(0)x(t)〉, the mean square displacement
(MSD) X(t) = 2[Cxx(0)−Cxx(t)], or the time-dependent
diffusion coefficient Dx(t) = Ẋ(t)/2. In the LT, X̃(s) =

2D̃x(s)/s = 2C̃υxυx(s)/s
2. Analogous relations hold for

the y direction.
Moreover, if we multiply Eq. (4) by fx(0) = mυ̇x(0)−

QBυy(0) and take the average, the time correlation func-
tions of the random forces, Cfxfx(t) = 〈fx(t)fx(0)〉 can
be expressed through the already derived VCFs. Repeat-
ing the same for the y component of the velocity with
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fy(0) = mυ̇y(0) + QBυx(0) and by using the identities
for stationary VCFs [1, 4], we come to the important
result

C̃fαfα(s) = kBTG̃(s), α = x, y. (7)
This is a generalization of the Kubo second FDT, which
thus holds also in the case when the bath responses to the
external magnetic field. The role of the memory function
is played only by G(t). When the bath response is ig-
nored, Ωi = 0, H(t) = 0, and Eqs. (4)–(7) coincide with
the previously derived equations for the BM of particles
in a magnetic field [7].

There are many possibilities to specify the obtained re-
sults for a concrete spectral distribution of the bath oscil-
lators’ frequencies. We have done it for the Drude spec-
trum [5], assuming that all particles have the same mass
µ and charge q. The relaxation time of the thermal force
is τ and the friction coefficient of the BP is ξ when τ → 0.
An illustration of the numerical calculations of the mem-
ory functions dependence on time is shown in Fig. 1. An-
alytical results forG(t) andH(t) have also been obtained.
This analysis and the found correlation functions of in-
terest will be published elsewhere. We only note that for
q 6= 0 the MSDs in the x and y directions are subdiffusive:
X(t) = Y (t) ≈ 2D1/2t

1/2 as t → ∞, with the fractional
diffusion coefficient D1/2 = (kBT/ξ)

√
2µ/π |q|B.

3. Conclusions

Unlike from the previous works on the Brownian
motion in external magnetic fields, in the presented
theory, the response of the surrounding bath particles is
also taken into account. This leads to several new results.

First, although we have proved that the Kubo second
FDT remains valid, the thermal random force and the
memory functions of the derived generalized Langevin
equations now depend on the magnetic induction B. Ex-
plicit expressions for these functions have been obtained.
The general formulae found possess large possibilities for
further developments. This concerns, e.g. the use of the
frequency distribution of the bath oscillators, which can
be very different for real systems. As an example, we con-
sidered the popular Drude spectrum, which at long times
leads to sub-diffusion with the fractional parameter 1/2.
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