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An effective-field theory based on the single-spin cluster has been used to study of a diluted spin-1/2 Ising
antiferromagnet on the kagome lattice with nearest-neighbor interactions. We observe five plateaus in the magne-
tization curve of the diluted antiferromagnet when a magnetic field is applied which is in agreement with Monte
Carlo calculation. The effect of the site-dilution on the magnetic susceptibility is also investigated and discussed.
In particular, we have found that the frustrated kagome lattice inverse susceptibility falls to zero at 0 K.

DOI: 10.12693/APhysPolA.137.628
PACS/topics: geometrical frustration, kagome lattice, effective-field theory

1. Introduction

It has long been known that frustration due to lat-
tice geometry in some Ising systems can result in infinite
ground-state degeneracy and no long-range order at any
temperature. The simplest model of geometrical frus-
tration is the triangle composed of three spins on the
vertexes with the antiferromagnetic (AFM) interaction
between them. Examples of the two-dimensional crys-
tal lattices composed of these triangles are the triangular
and kagome lattices. Namely, in the latter kind of lat-
tice, the frustrated triangles are arranged to share sites
(corner-sharing triangles, Fig. 1) instead of bonds (edge-
sharing triangles) as is the case in the former lattice. As
has been pointed out in [1], the AFM system in kagome
lattice shows huge degeneracy of ground states and small
magnetic field h can lift this degeneracy partially. For
this reason in an effective-field theory two magnetization
plateaus are formed for h/|J | < 4.0 [2]. This finite-field
macroscopic degeneracy is not present in the frustrated
triangular lattice which shows, by using the same ap-
proximate theory, only one plateau with magnetization
m = 1/3 [3]. Therefore, it is especially important in ap-
proximate theories to incorporate possible perturbations
in this kagome AFM system to lift this degeneracy and
try to accurately describe this system, when compared
with both Monte Carlo and experimental data [4].

The purpose of the present work is to study effects
of site dilution by nonmagnetic impurities of the oth-
erwise perfect kagome lattice on the magnetic proper-
ties while paying attention to the magnetic susceptibil-
ity. This problem is relevant for establishing comparisons
with experimental data as, obviously, any real material
contains a certain amount of dilution. These systems are
the most simple disordered materials because the perfect
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Fig. 1. Illustration of the kagome lattice divided into
three sublattices 1, 2, and 3 (see text).

crystallographic lattice exists in it, with the lattice sites
occupied at random by magnetic or nonmagnetic atoms.
To our knowledge no analytical expression, exact or ap-
proximate, which is valid at all temperatures, has so far
been proposed for such disordered AFM kagome lattice.

2. Model and formalism

Let us introduce the Hamiltonian for a site-dilute Ising
AFM, treated in this work, in the following form:

H = −J
∑
(i,j)

sisjξiξj − h
∑
i

siξi, (1)

where J < 0 represents the AFM interaction, h is the
magnetic field, si are the Ising spins (si ± 1), and (i, j)
denotes the summation over all the nearest-neighboring
spin pairs. {ξj} is a set of independent, uniformly dis-
tributed random variables which take values of unity or
zero, depending on whether the site j is occupied by a
magnetic atom or not.

However, like in the triangular lattice [3], to include the
effect of the geometrical frustration, we chose to partition
the kagome lattice into three interpenetrating sublattices
1, 2, and 3 in such a way that spins on one sublattice
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only interact with spins from the other two sublattices
(see Fig. 1). Now, by following the same procedure as
that in Ref. [3], the expressions for the averaged sublat-
tice magnetizations mν = 〈〈siν〉0ξi〉c, (ν = 1, 2, 3), where
〈. . . 〉0 (〈...〉c) indicates the thermal (configurational) av-
erage, are given by

m1 = p(a+m2b)
2(a+m3b)

2 tanh[β(x+ h)]|x=0, (2)

m2 = p(a+m1b)
2(a+m3b)

2 tanh[β(x+ h)]|x=0, (3)

m3 = p(a+m1b)
2(a+m2b)

2 tanh[β(x+ h)]|x=0, (4)
with a = 1− p+ p cosh(JD), b = sinh(JD), β = 1/kBT ,
where p is the concentration of magnetic atoms de-
fined by p = 〈ξj〉c. The explicit form of Eqs. (2)–(4)
can be calculated by using the mathematical relation
exp(αD)f(x) = f(x + α), where D = ∂/∂x is the dif-
ferential operator. Then we can define the total magne-
tization per site m = (m1 +m2 +m3)/3 from which the
total initial susceptibility per site is given by

χ = lim
h→0

∂m

∂h
=

1

3
(χ1 + χ2 + χ3), (5)

where χν is the sublattice initial susceptibility defined by
χν = limh→0(∂mν/∂h), (ν = 1, 2, 3).

3. Results and discussion

In zero magnetic field, Eqs. (2)–(4) have only the solu-
tion with m = 0 at all temperatures, which means that
our effective-field approach reproduces the exact result
of no long-range order down to T = 0 K [5].

On the other hand, in Fig. 2 we plot the field depen-
dence of the magnetization at low temperature, namely
kBT/|J | = 0.05, for diluted cases (p < 1) with different
degrees of dilution. In this case, we observe five plateaus
in the magnetization curves between integer values of the
reduced magnetic field h/|J | ≤ 4.0. This behavior is in
excellent agreement with the Monte Carlo method [6],
with the saturated value of the magnetization equal to p.

Fig. 2. Magnetization as function of h/|J | for the di-
luted AFM Ising model on the kagome lattice with
kBT/|J | = 0.05.

Fig. 3. The zero-field inverse susceptibility per spin for
the diluted AFM Ising model on the kagome lattice ver-
sus temperature for different concentrations of magnetic
atoms. The inset shows two curves of the same quantity
including very high temperatures.

Fig. 4. The fitted curve of the concentration depen-
dence of the Curie–Weiss temperature kB |Θ |/|J | for the
diluted AFM Ising model on the kagome lattice.

This situation contrasts with pure case (or p = 1.0),
where two non-physical plateaus are observed for
h/|J | < 4.0 [2]. We note that in the case of the diluted
kagome lattice, the values of the crossover magnetic fields
hc/|J | can be obtained by considering the energy of two
corner-sharing triangles. We will not repeat such calcu-
lations here, as they can be found in Ref. [6], where the
origin of the five magnetization plateaus in Fig. 2 is also
elucidated.

As can be seen from Fig. 3, the zero-field inverse sus-
ceptibility for different concentrations of magnetic atoms
in our AFM Ising model on the kagome lattice goes to
the zero for T → 0 K. On the other hand, the inverse
susceptibilities at high temperatures correspond to the
linear Curie–Weiss law. In order to see this linear behav-
ior more clearly, we show in the inset of the figure exam-
ples of two curves with the concentrations p = 1.0 and
p = 0.6 including very high temperatures. Generally, the
asymptotes of these inverse susceptibilities pass through
the temperature axis at the negative Curie–Weiss tem-
perature Θ . From the detailed numerical calculations
we find that for p = 1.0 (undiluted case) the value of
kB |Θ |/|J | = 4.7384, which decreases almost linearly to
zero when p → 0. This fitted curve of the Curie–Weiss
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temperature Θ is shown in Fig. 4. We note that for
p = 0.0 the Curie–Weiss temperature vanishes (empty
circle), since in the absence of magnetic atoms the sus-
ceptibility should correspond to that of the nonmagnetic
kagome lattice.

4. Conclusions

We have used the effective-field in order to study mag-
netic ordering on the highly frustrated diluted kagome
lattice. The calculation demonstrates that the AFM
Ising model on the kagome lattice due to the frustra-
tion does not show long-range order even at T = 0 K,
which is exact. However, a small magnetic field applied
together with the site dilution can lift this degeneracy
and the resulting magnetization exhibits five plateaus in
contrast to the case of the pure model, which displays,
for h/|J | < 4.0, two unphysical plateaus [2]. Therefore,
we have shown that in the analytical but approximate
theory it is important to incorporate another perturba-
tion to accurately describe such highly frustrated system.
In our case the correct theoretical results come from the
interplay of dilution and magnetic field.

Another effect of dilution is related to the inverse sus-
ceptibility in the whole temperature range. We have
found that both the non-diluted and diluted frustrated
kagome lattice inverse susceptibilities fall to zero at 0 K.
Thus, there is a divergence of the susceptibility as we ap-
proach T = 0 K for all the cases considered in this work.
Even though we will not present a comparison with ex-
perimental measurements here, it is interesting to note

that some of the features exhibited by the calculated sus-
ceptibility are qualitatively similar to those experimen-
tally found in the iron jarosite [7] which is considered as
an experimental realization of the kagome lattice.
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