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Owing to a high degree of geometrical frustration an Ising antiferromagnet on a kagome lattice is known to
exhibit no long-range ordering at any temperature, including the ground state. Nevertheless, at low temperatures
it shows a strongly correlated, highly fluctuating regime known as a cooperative paramagnet or classical spin liquid.
In the ground state it is characterized by a macroscopic degeneracy which translates to a relatively large value of
the residual entropy. It has been shown that the presence of a macroscopic degeneracy associated with geometrical
frustration below the saturation field can facilitate an enhanced magnetocaloric effect, which can exceed that of an
ideal paramagnet with equivalent spin by more than an order of magnitude. In the present study we investigate
magnetic and magnetocaloric properties of the Ising antiferromagnet on a kagome lattice by Monte Carlo simulation.
In particular, we calculate the entropy of the system using the thermodynamic integration method and evaluate
quantities which characterize magnetocaloric effect, such as the isothermal entropy and adiabatic temperature
changes in a varying magnetic field. It is found that the Ising antiferromagnet on a kagome lattice shows the
most interesting magnetocaloric properties at low temperatures and moderate magnetic fields, suggesting that its
potential can be used in technological applications for low-temperature magnetic refrigeration.
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1. Introduction

The phenomenon of geometrical frustration in mag-
netic systems is closely related to the geometry of the
lattice, which does not allow to fully satisfy all the in-
teractions between its spins [1]. The effects of frustra-
tion are rich and still not well-understood. Previous re-
search suggests that the field-induced adiabatic temper-
ature change is significantly larger for such systems [2]
than for their non-frustrated counterparts, which makes
them better candidates for magnetic refrigeration using
the magnetocaloric effect (MCE). MCE can be character-
ized by the change of the magnetic entropy in response
to variation of the magnetic field. The Ising antiferro-
magnet on a kagome lattice (IAKL) is a great example of
a highly frustrated system, which was extensively stud-
ied in the past [1, 3–5]. The kagome lattice consists of
corner-sharing triangles (Fig. 1) and its elementary cell
is shaped like the “Star of David”. The exact solution
for the Ising model on the kagome lattice was found in
1951 by Syozi [3]. He discovered that in the ferromag-
netic case the system shows a phase transition at the
critical temperature which is slightly lower than that of
the square lattice. Nevertheless, the antiferromagnetic
case shows no critical behavior at any temperature. It
is also known that the density of a residual entropy of
IAKL is 0.5018kB [4], which is larger than that of the tri-
angular lattice (0.3231kB) [6]. The ground state energy
per spin was calculated by Kano and Naya [4] and it is
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−2J in the ferromagnetic (J > 0) case and 2J/3 in the
antiferromagnetic (J < 0) case, where J is the exchange
interaction constant. In this paper, magnetocaloric prop-
erties of IAKL in the presence of an external magnetic
field are explored by means of Monte Carlo simulation.

Fig. 1. The kagome lattice is a tripartite lattice and
can be divided into three sublattices — denoted by ◦,
• and �.

2. Model

The Hamiltonian of the studied system is given by

H = −J
∑
〈i,j〉

σiσj − h
N∑
i=1

σi, (1)

where the first summation goes over the nearest neigh-
bors, the second sum goes over each spin, N is the total
number of spins, σi = ±1 is the Ising spin variable and
h is the external magnetic field. In order to introduce
frustration, interactions between neighboring spins were
chosen to be antiferromagnetic (J < 0).
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http://doi.org/10.12693/APhysPolA.137.622
mailto:milan.zukovic@upjs.sk


Magnetocaloric Properties of an Ising Antiferromagnet on a Kagome Lattice 623

3. Method

The standard Metropolis algorithm was used. At each
Monte Carlo (MC) step a new state σ′

i is proposed for a
selected spin σi and the new configuration is accepted
with the probability p(σi → σ′

i) = min{1, exp(−βdE)},
where β = 1/(kBT ) is the inverse temperature and dE is
the energy difference between the proposed and the old
configuration. When the algorithm makes a MC trial for
each spin, we say that a MC sweep was completed. From
the simulation, we directly obtain the energy per spin
e = 〈H〉/(|J |N), from Eq. (1), and the magnetization
per spin m = 〈M〉/N , where M =

∑N
i=1 σi and 〈. . . 〉

denotes a thermal average. However, the entropy, which
we are interested in, cannot be calculated directly from
the MC simulation. Nevertheless, it can be obtained as
a function of the inverse temperature by utilizing the
thermodynamic integration method (TIM) [7] as

S(β) = N ln (2s+ 1) + βE(β)−
β∫

0

E(β′)dβ′, (2)

where the spin number s is in our case 1/2 and E = Ne.
MCE is characterized by the following quantities: the
adiabatic temperature change ∆Tad and the isothermal
entropy change ∆Siso. For a fixed temperature T and
the change of the field from h1 to h2, ∆Siso is defined as:

∆Siso(h2 − h1, T ) = S(h2, T )− S(h1, T ). (3)
Similarly, in adiabatic condition with the entropy S the
corresponding temperature change ∆Tad from T1 to T2
can be calculated as

∆Tad(h2 − h1, S) = T2(h2)− T1(h1). (4)

4. Results and discussion

Throughout the paper we set J = −1 and kB = 1.
For each temperature 4 × 105 MC sweeps were used to
calculate physical quantities after discarding another 105

for thermalization. For smaller values of the field h = 0,
0.1, 0.2, 0.3, 0.4, and 0.5, simulations were performed on
the lattice with 50 × 50 cells (7500 spins in total). The
inverse temperature was chosen in the range β ∈ 〈0, 50〉.
Values of β were denser in a low-temperature region to in-
crease the precision of TIM. Additional simulations were
performed on a smaller lattice with 20 × 20 cells (1200
spins in total) for larger values of the field h = 1, 2, 3, 4,
and 5. In the absence of the field, our simulation yielded
the ground state (GS) energy close to the value e = −2/3
(see Fig. 2a), which is in a good agreement with the ex-
act value [4]. The energy corresponds to each elementary
triangle having two spins up and one down or vice versa,
with no ordering among them — the spin liquid state.
In the presence of the external magnetic field, the GS
energy is lowered by a Zeeman term proportional to the
field’s strength.

Fig. 2. Energy per spin for various values of the field h.

Fig. 3. Magnetization per spin and entropy density for
various values of the field h.

Fig. 4. Adiabatic temperature change and isothermal
entropy change for various values of the field change ∆h.

In the zero field, the system being antiferromagnetic,
has zero magnetization (Fig. 3a). In the presence of
a small field, we observe in GS 1/3 plateau which per-
sists up to h = 4. Right at the h = 4 the magnetization
jumps to the value m = 3/5 (Fig. 3b) and for h > 4,
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the system reaches the fully saturated state with m = 1.
This behavior is also reflected in the entropy density (see
Fig. 3c,d), which is in the zero field equal to the theo-
retical value 0.5018 [4]. Small fields partially lift the de-
generacy and the entropy density reaches the value 0.109
(which is close to the value mentioned in Ref. [8]). At
the saturation field h = 4, the entropy density is equal
to 0.3878 and for h > 4 it becomes zero.

In addition to the previous quantities, the isother-
mal entropy change ∆Siso and the adiabatic temperature
change ∆Tad were calculated from Eqs. (3) and (4), re-
spectively. We chose h1 = 0 and h2 > 0. From Fig. 4 one
can see that MCE is the most prominent in the region of
low temperatures. Even a small change of the field can
lead to a large change of ∆Siso and ∆Tad. The entropy
change has the largest value −∆Smax

iso /N = 0.3911 for
small fields (h < 4), for h = 4 it is −∆Smax

iso /N = 0.1142,
and for h > 4 its value is −∆Smax

iso /N = 0.5019. This
suggests that IAKL could be used for magnetic refriger-
ation in a low-temperature region. Similarly, the adia-
batic temperature change ∆Tad has the most interesting
behavior in the low-temperature region (Fig. 4a,c). If
the field is increased (decreased), the temperature of the
system under adiabatic conditions increases (decreases)
proportional to the field’s strength.

5. Summary

We have investigated magnetic and magnetocaloric
properties of the Ising antiferromagnet on a kagome
lattice by Monte Carlo simulation. A thermodynamic
integration method allowed us to indirectly calculate

the magnetic entropy and thus obtain relevant quantities
characterizing magnetocaloric effect, such as the isother-
mal entropy and adiabatic temperature changes in a vary-
ing magnetic field. We found that the model shows favor-
able magnetocaloric properties at very low temperatures
even in relatively small applied magnetic fields, which
makes this system a promising candidate to be used for
low-temperature magnetic refrigeration.
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