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Phase Diagram of a Generalized XY Model
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In the present study we investigate the effects of geometrical frustration on the XY model with antiferro-
magnetic coupling on a triangular lattice, generalized by the inclusion of a third-order antinematic term. We
demonstrate that at non-zero temperatures such a generalization leads to a phase diagram consisting of three
different quasi-long-range ordered phases. Compared to the model with the second-order antinematic coupling, it
includes besides the antiferromagnetic and third-order antinematic phases which appear in the limits of relatively
strong antiferromagnetic and third-order antinematic interactions, respectively, an additional complex noncollinear
quasi-long-range ordered phase at lower temperatures wedged between the antiferromagnetic and third-order an-
tinematic phases. This new phase originates from the competition between the antiferromagnetic and third-order
antinematic couplings, which is absent in the model with the second-order antinematic coupling.
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1. Introduction

Despite the rigorously proven absence of any true long-
range ordering [1], the two-dimensional XY model is
known to exhibit an unusual infinite order phase tran-
sition belonging to the Kosterlitz–Thouless (KT) univer-
sality class [2]. Introduction of a nematic coupling into
the Hamiltonian leads to an additional phase transition
between the magnetic and nematic phases, belonging in
the Ising universality class [3]. Recently, it has been
shown that higher-order harmonics can lead to a qual-
itatively different phase diagram, with additional quasi-
long-range ordered (QLRO) phases originating from the
competition between the ferromagnetic (FM) and q-th-
order (pseudo) nematic (Nq, q > 2) couplings [4]. The
new phase transitions were identified to belong to the
3-state Potts, Ising, or KT universality classes. The sim-
plest generalization involving the second-order antine-
matic (AN2) coupling, in addition to the antiferromag-
netic (AFM) one, has been shown to display, on a geo-
metrically frustrated triangular lattice, besides the AFM
and AN2 phases, also an additional chiral phase above
the KT line [5]. Here we modify this model by consider-
ing the AN3 term of the third- instead of the second-order
AN2 and study how the phase diagram is affected by this
change. Recent investigations of the ground-state prop-
erties of such a model suggested an interesting behavior
with potential interdisciplinary applications [6].
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2. Model and methods

The Hamiltonian of the generalized XY model, includ-
ing the q-th-order couplings, can be written as follows:

H = J1
∑
〈i,j〉

cos(φi − φj) + Jq
∑
〈i,j〉

cos
(
q(φi − φj)

)
,(1)

where φi ∈ [0, 2π] represents the i-th site spin angle in
theXY plane, J1 and Jq are exchange interaction param-
eters, and 〈i, j〉 denotes the sum over nearest-neighbor
spins. The first term J1 is a usual magnetic, i.e., FM
(J1 < 0) or AFM (J1 > 0) coupling, while the second
term Jq represents a generalized nematic, Nq (Jq < 0)
or ANq (Jq > 0) interaction. We consider the model (1)
for q = 3 and the interaction parameters J1, Jq ∈ [0, 1] in
the form J1 = x, Jq = 1− x, with x ∈ {0, 0.1, 0.2, . . . , 1}
to cover the interactions between the pure AN3 (x = 0)
and the pure AFM (x = 1) limits.

The Monte Carlo (MC) simulations, based on the stan-
dard Metropolis algorithm, implemented on graphical
processing units, were employed to simulate the stud-
ied system. We considered the system of a linear size
L = 96, with periodic boundary conditions to eliminate
boundary effects. The simulations were carried out for
the whole relevant temperature range from T = 0.01,
which approximates ground-state conditions, all the way
to T = 0.52 corresponding to the paramagnetic phase.
At each temperature step 105 MC sweeps were used to
ensure equilibration of the system and another 5 × 105

MC sweeps were used to calculate mean values of the fol-
lowing relevant quantities: the internal energy per spin

e =
〈H〉
L2

, (2)

the specific heat per spin

C =
〈H2〉 − 〈H〉2

T 2L2
, (3)

(613)
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the magnetic (m1) and generalized nematic (m3) order
parameters

mk =
〈Mk〉
L2

=
1

L2

〈√√√√3

3∑
α=1

M2
kα

〉
,

k = 1, 3, α = 1, 2, 3, (4)
where Mkα is the α-th sublattice order parameter vector
given by

Mkα =

(∑
i∈α

cos(kφαi),
∑
i∈α

sin(kφαi)

)
, (5)

and finally, the standard (κ1) and generalized (κ3) stag-
gered chiralities

κk =
〈Kk〉
L2

=
1

2L2

〈∣∣∣∣∣∣
∑
p+∈

a
κkp+ −

∑
p−∈

`
κkp−

∣∣∣∣∣∣
〉
,

k = 1, 3, (6)
where κkp+ and κkp− are the local generalized chiralities
for each elementary plaquette of upward and downward
triangles, respectively, defined by:

κkp = 2
{
sin
(
k(φ2 − φ1)

)
+ sin

(
k(φ3 − φ2)

)
+sin

(
k(φ1 − φ3)

)}
/3
√
3. (7)

3. Results

Anomalies (peaks) in the specific heat measurements
were used to determine temperatures at which the stud-
ied system undergoes phase transitions, yielding the
phase diagram. The phases themselves are then char-
acterized by order parameters, defined in the previous
section.

Temperature dependences of the generalized magnetic,
nematic, and chiral order parameters, as well as the
specific heat are displayed in Fig. 1, for the values of

x = 0.2, 0.6, and 0.8. It is clear that for x = 0.2 and
x = 0.8, the magnetic (m1) and generalized nematic (m3)
order parameters vanish at different temperatures. This
means that for these values of the exchange interaction
parameters (and as shown in Fig. 2, also in their vicin-
ity) there are two distinct QLRO phases. At low tem-
peratures near the ground state there is a QLRO phase
in which all of the order parameters are non-zero, al-
though, only the parameters associated with the AN3
ordering reach saturation and only for x < 0.8. This is
due to geometrical frustration and competition between
the AFM and AN3 interactions. The ground states of this
model have been thoroughly investigated in Ref. [6] and
the spins on each triangular plaquette were found to be
arranged in such a way that two neighbors are oriented
almost parallel with respect to each other and almost
anti-parallel with respect to the third one, with the turn
angles dependent on the interaction strength ratio. In
the following we will refer to this phase as a canted AFM
(CAFM) phase. As temperature increases to the value
of the first phase transition either magnetic (for x . 0.5)
or nematic (for x & 0.6) order parameter falls to zero
while the corresponding chiral order parameter shows an
anomalous decrease, but remains non-zero. In the sec-
ond QLRO phase this chiral order parameter continues
to decline, but stays slightly above zero all the way until
the second phase transition to the paramagnetic state.
The other two parameters — nematic for x . 0.5 and
magnetic for x & 0.6 and their corresponding chiral or-
der parameters decrease slightly but remain largely un-
affected until the transition to the paramagnetic state
where all the order parameters vanish. The presence of
three distinct phases is further supported by our calcu-
lations of the specific heat per spin (Fig. 1, lower row),
which clearly displays two peaks at two separate temper-
atures corresponding to the drops of order parameters,
as described above.

Fig. 1. Temperature dependences of different order parameters per spin (upper row) and the specific heat per spin
(lower row), for three representative points in the exchange interaction parameter space.
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Fig. 2. Phase diagram in the x–T parameter plane.
The symbols represent temperatures corresponding to
the maxima of the specific heat, lines serve only as a
guide to the eye. Empty symbols represent the limits of
the CAFM phase obtained from the ground-state anal-
ysis conducted in [6].

For 0.5 ≤ x ≤ 0.6 the situation changes in the way that
the CAFM phase appears to persist as the temperature is
increased until the system undergoes a transition directly
to the paramagnetic state with all the order parameters
vanishing together. In this case there is only a single peak
in the specific heat, corresponding to this transition.

The phase diagram depicted in Fig. 2 covers the whole
range of the exchange parameter space from the purely
AFM (x = 1) to the purely AN3 (x = 0) cases. The be-
havior in the limiting cases is well known — there is a sin-
gle phase transition from the AFM, for x = 1 or AN3, for
x = 0, phases, respectively, to the disordered paramag-
netic state at higher temperatures. For 0.0 < x . 0.997
(see Ref. [6]) there is a CAFM phase at low tempera-
tures which gives way to the AN3 phase (0.0 . x . 0.5),
AFM phase (0.6 . x . 0.997), or straight to the para-
magnetic phase (0.5 . x . 0.6). It should be noted
that the transition to the paramagnetic phase occurs at
much lower temperatures compared to the purely AFM
and AN3 cases.

4. Conclusions

We have studied the effects of geometrical frus-
tration and competition between the AFM and AN3
couplings in a generalized XY model. In the work of
Poderoso et al. [4], who studied the corresponding non-
frustrated model with the ferromagnetic and nematic in-
teractions, the inclusion of q-th-order nematic couplings

leads to new ordered phases for q ≥ 5. In contrast, in the
present model we observe the emergence of a new CAFM
phase already for q = 3. This phase, not present in the
case of q = 2 [5], is characterized by chiral, AFM, and
AN3 ordering with only the parameters corresponding
to AN3 interaction for x < 0.8 reaching saturation. For
roughly equal strength of the AFM and AN3 interactions,
the competition forces the system to make transition di-
rectly from the CAFM into the paramagnetic state at
relatively low temperatures. The transitions to the para-
magnetic phase are believed to belong to the KT uni-
versality class [5], whereas the nature of the transitions
between the CAFM phase and AFM/AN3 ordered phases
is not precisely known yet. The reason is a high degree of
frustration and competition, which makes it difficult to
obtain statistically significant results from standard MC
simulations at critical temperatures. Further study using
more sophisticated methods is desirable.
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