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Unsaturated Bipartite Entanglement of a Spin-1/2
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A bipartite entanglement between two nearest-neighbor Heisenberg spins of a spin-1/2 Ising-Heisenberg model
on a triangulated Husimi lattice is quantified using a concurrence. It is shown that the concurrence equals zero
in a classical ferromagnetic and a quantum disordered phase, while it becomes sizable though unsaturated in
a quantum ferromagnetic phase. A thermally-assisted re-entrance of the concurrence is found above a classical
ferromagnetic phase, whereas a quantum ferromagnetic phase displays a striking cusp of the concurrence at a critical
temperature.
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1. Introduction

The polymeric compound Cu9Cl2(cpa)6·nH2O (cpa —
carboxypentonic acid) has recently attracted a lot of at-
tention, because it does not order down to the lowest
experimentally reached temperatures due to a geometric
spin frustration of the underlying triangulated kagomé
lattice [1, 2]. Because of intractability of the respec-
tive spin-1/2 Heisenberg model on a triangulated kagomé
lattice we have proposed and exactly solved a simpler
spin-1/2 Ising–Heisenberg model on related triangulated
(triangles-in-triangles) structures with the aim to bring
insight into unconventional magnetism of this highly frus-
trated magnetic material [3, 4]. From this perspective,
the spin-1/2 Ising–Heisenberg model on a triangulated
kagomé lattice [3] and its related recursive triangulated
Husimi counterpart [4] affords a long sought-after play-
ground for a theoretical investigation of the quantum
entanglement, which is eligible also for an experimental
testing.

2. The Ising–Heisenberg model
on a triangulated Husimi lattice

The spin-1/2 Ising–Heisenberg model on a triangulated
Husimi lattice schematically illustrated on the left-hand-
side of Fig. 1 can be defined through the Hamiltonian:

Ĥ = −JH
2N∑
〈k,l〉

[∆(Ŝxk Ŝ
x
l + Ŝyk Ŝ

y
l ) + Ŝzk Ŝ

z
l ]− JI

4N∑
〈k,j〉

Ŝzk σ̂
z
j ,

where σ̂zj and Ŝαk (α = x, y, z) label spatial components
of the usual spin-1/2 operator assigned to the Ising and
Heisenberg spins, respectively, N denotes the total num-
ber of the Ising spins, the parameter JH is the XXZ
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interaction between the nearest-neighbor Heisenberg
spins, ∆ is an exchange anisotropy, and the parameter
JI labels the Ising interaction between the nearest-
neighbor Heisenberg and Ising spins. The overall
magnetic structure of the triangulated Husimi lattice
forms smaller triangles of the Heisenberg spins (trimers),
which are embedded into larger triangles of the trian-
gular Husimi lattice involving in its nodal lattice sites
the Ising spins.

It has been previously proved [4] that the generalized
star-triangle transformation provides an exact mapping
correspondence between the partition functions and as-
sociated free energies of the spin-1/2 Ising–Heisenberg
model on a triangulated Husimi lattice and the effective
spin-1/2 Ising model on a triangular Husimi lattice shown
on right-hand-side of Fig. 1:

FIHM(β, JH, JI,∆) = FIM(βR)− 2

3
lnA. (1)

Here, β = 1/(kBT ), kB is Boltzmann’s constant, T is ab-
solute temperature, and two mapping parameters A and
βR are given by Eqs. (6)–(9) of Ref. [4]. The free en-
ergy of the effective spin-1/2 Ising model on a triangular
Husimi lattice can be found through exact recursive re-
lations

FIM = β−1[2 ln(eβR+2x+x2)− ln(1+x2)−βR/2]. (2)
The parameter x can be obtained by solving the recursive
relation (Eq. (13) in Ref. [4]) iteratively or by solving the
polynomial equation x3+(2− eβR)x2+(eβR−2)x−1 = 0
with the roots

x1,2 =
1

2

[
eβR−3±

√
(eβR − 5)(eβR − 1)

]
, x3 = 1.

(3)
It is noteworthy that the first two solutions x1,2 corre-
spond to a spontaneously ordered phase with two oppo-
site signs of the spontaneous magnetization, while the
third solution x3 = 1 corresponds to a disordered para-
magnetic phase without any long-range order. Hence,
it follows that the critical temperature of the effective
spin-1/2 Ising model on a triangular Husimi lattice is
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Fig. 1. The spin-1/2 Ising–Heisenberg model on a tri-
angulated Husimi lattice (left-hand-side) and its rigor-
ous mapping to the effective spin-1/2 Ising model on
a triangular Husimi lattice (right-hand-side). Filled
(empty) circles denote lattice positions of the Heisen-
berg (Ising) spins.

given by the condition βcR = ln 5 being consistent with
a coalescence of all three roots x1 = x2 = x3 = 1,
which also represents the critical condition for the spin-
1/2 Ising–Heisenberg model on a triangulated Husimi lat-
tice due to the mapping relation (1) between the free
energies.

The main goal of this work lies in a rigorous analysis
of entanglement. A bipartite entanglement between two
nearest-neighbor Heisenberg spins can be quantified via
concurrence [5]:

C = max

0, 4 |CxxHH| − 2

√(
1

4
+ CzzHH

)2

−m2
H

 , (4)

which can be expressed in terms of three local observ-
ables, namely, two spatial components of the pair corre-
lation function CxxHH = 〈Ŝxk,iŜxk,i+1〉, CzzHH = 〈Ŝzk,iŜzk,i+1〉
and the sublattice magnetization of the Heisenberg spins

mH = 〈(Ŝzk,i+ Ŝzk,i+1)/2〉. An exact result for the sublat-
tice magnetization mH was already reported in Ref. [4]
[see Eq. (19)], while both spatial components of the pair
correlation function can be calculated from Eq. (1) ac-
cording to the formulae

CxxHH = −1

4

∂FIHM

∂JH∆
, CzzHH = −1

2

∂FIHM

∂JH
. (5)

The final formulae for CxxHH and CzzHH are too complex to
write them down here explicitly.

3. Results and discussion

Let us explore the bipartite entanglement of the
spin-1/2 Ising–Heisenberg model on a triangulated
Husimi lattice, whereas our further attention will be re-
stricted to the model with the ferromagnetic coupling
constant JI > 0 because the antiferromagnetic counter-
part JI < 0 causes a mere flip of all Ising spins. First,
we will briefly comment on all possible ground states
of the spin-1/2 Ising–Heisenberg model on a triangu-
lated Husimi lattice, which have been already reported
in Ref. [4] and can be classified either as the classical fer-
romagnetic (CF) phase

|CF〉 =
N∏
i=1

|↑〉σz
i

2N/3∏
k=1

|↑↑↑〉Sz
k1,S

z
k2,S

z
k3
, (6)

or the quantum ferromagnetic (QF) phase

|QF〉 =

N∏
i=1

|↑〉σz
i

2N/3∏
k=1

1√
3

× (|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)Sz
k1,S

z
k2,S

z
k3
, (7)

Fig. 2. Typical thermal variations of the sublattice magnetizations of the Ising (mI) and Heisenberg (mH) spins, the
correlation functions (Cxx

HH, Czz
HH) and the concurrence C for a few selected sets of the interaction parameters. The inset

in part (a) shows concurrence in enlarged scale.
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Fig. 3. A density plot of the concurrence in the
JH/JI − kBT/JI plane for two different values of the
exchange anisotropy: (a) ∆ = 1; (b) ∆ = 2. Dotted
lines separate the entangled region (C > 0) from the
disentangled one (C = 0), while solid lines display a
critical temperature associated with a breakdown of the
spontaneous long-range order.

or the highly degenerate ground-state manifold further
referred to as the quantum disordered (QD) phase. The
QD phase emerges in the frustrated parameter space
JH/JI < −2/(2 + ∆), the QF phase is realized when-
ever ∆ > 1 and JH/JI > 1/(∆− 1), while the CF phase
is allocated in the parameter region bounded by the in-
equalities JH/JI > −2/(2 + ∆) and JH/JI < 1/(∆− 1).

The sublattice magnetizations of the Ising and Heisen-
berg spins (mI, mH), the correlation functions (CxxHH,
CzzHH), and the concurrence C are plotted against tem-
perature in Fig. 2a–d. Thermal variations displayed
in Fig. 2a,b show qualitative similarities, since the se-
lected parameters coincide with the CF ground state.
It is evident that the concurrence may display a
striking thermally-assisted re-entrance, which is much
more pronounced for the ferromagnetic Heisenberg cou-
pling (JH > 0, Fig. 2b) than the antiferromagnetic one
(JH < 0, Fig. 2a). Figure 2c depicts typical behavior at a
coexistence point of the CF and QF ground states, while
Fig. 2d displays typical temperature dependences when
starting from the QF ground state. Under this condi-
tion, the concurrence decreases upon increasing temper-
ature until it reaches an outstanding cusp at a critical
temperature associated with breakdown of the sponta-
neous long-range order, which is successively followed by
a gradual decline ending at a threshold temperature.

Let us summarize our findings by constructing global
phase diagrams of the spin-1/2 Ising–Heisenberg model
on a triangulated Husimi lattice for two values of the
exchange anisotropy ∆ = 1 and 2. To this end, a den-
sity plot of the concurrence is shown in Fig. 3a,b in
JH/JI − kBT/JI plane along with a critical temperature
connected with a breakdown of the spontaneous order. It
follows from Fig. 3a,b that a weak entanglement can be
found within the CF phase close to a phase boundary ei-
ther with the QD or QF phase. However, the preponder-
ant entanglement can be detected in the QF phase, which
exhibits a sizable drop of the concurrence around the crit-
ical temperature successively followed by a more gradual
thermally-assisted decline. The concurrence thus sur-
vives far above the critical temperature of the QF phase.

4. Conclusions

In the present work, the quantum entanglement of
the spin-1/2 Ising–Heisenberg model on a triangulated
Husimi lattice has been examined in detail. Exact results
for the sublattice magnetization and two spatial com-
ponents of the pair correlation function were employed
in order to calculate the quantum concurrence, which
serves as a measure of the bipartite entanglement be-
tween the nearest-neighbor Heisenberg spins. It has been
found that the bipartite entanglement is totally absent
within the CF and QD ground states, while it becomes
sizable though unsaturated within the QF ground state.
Strikingly, a thermally-assisted re-entrance of a relatively
weak bipartite entanglement (concurrence) can be de-
tected above the CF ground state in a vicinity of phase
boundary either with the QF or QD ground states. In ad-
dition, it turns out that the threshold temperature, above
which the bipartite entanglement vanishes, may seem-
ingly exceed the critical temperature of the QF phase
accompanied with a cusp in the relevant temperature de-
pendence of the concurrence.
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