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Photovoltaic systems are subject to various faults. These faults result in significant degradation in photovoltaic

system performances. These degradations result in a significant reduction in system efficiency as a result of increase
in operating costs and times of exclusion of the photovoltaic system. Therefore, health monitoring and high accuracy
error detection are extremely important for a photovoltaic system. In this study, fault detection and classification
in photovoltaic systems are performed by using common vector approach which is first proposed in the literature
for speech recognition and then is applied for face recognition. The faulty conditions discussed in the study are
partial shading and series resistance degradation. In both fault detection situations, the common vector approach
method is used to determine the type of fault using simulation data obtained under healthy operation and faulty
operation conditions and very high fault detection rates are obtained. In order to evaluate the accuracy of the
proposed method, the data obtained are also evaluated with the principal component analysis method, which is
previously presented for photovoltaic system fault detection in the literature. According to the results obtained,
principal component analysis method completely fails in case of serial resistance degradation fault. However, by
using common vector approach method proposed in this study, a very high fault detection rate such as 97.5% can
be obtained in serial resistance degradation fault. Likewise, in the case of partial shading, higher fault detection
rate is achieved in common vector approach method (99.6%) compared to principal component analysis method
(95.4%).
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1. Introduction

The solar energy has been used more widely than fossil
energy because it does not cause air pollution. It has
no energy costs and is an inexhaustible source of energy.
Photovoltaic (PV) systems which have serial and parallel
connected modules are used to convert solar energy into
electrical energy [1].

In PV systems it is extremely important to identify
situations where the operating conditions change. These
cases are called “faults”, they are either system-based or
environmental factors based [2, 3]. Because these types
of conditions, which can be called as bad working con-
ditions, can seriously affect the produced energy yield,
system efficiency, as well as the security and reliability of
the entire system in case of them not being detected and
corrected [4–6].

In recent years, many studies have been proposed for
the fault diagnosis of PV systems. These studies gener-
ally differ in terms of main features such as rapid fault
detection, required input data, and the separability of dif-
ferent faults [3]. Faults can be mainly grouped into two
categories as to be visual and thermal methods, and elec-
trical methods [7]. Electrical methods use electrical sig-
nals data as the input data to the fault diagnosis systems.
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These methods can be classified among themselves as
to be I–V characteristics analysis, power losses anal-
ysis, voltage and current measurement, statistical and
signal processing approaches, and artificial intelligence
techniques [8–10].

In this paper, a fault detection method that is based on
artificial intelligence techniques, which belongs to elec-
trical methods is proposed. In this study, to analyze
thus effectively detect the faults of PV array outputs
the common vector approach (CVA), that is a feature
extraction method, is used [11]. To our best knowl-
edge, CVA method has not yet been used for PV sys-
tems diagnosis in such operating conditions in the lit-
erature. In recent years, the use of the principal com-
ponent analysis (PCA) method for detecting PV system
faults has been frequently seen in the literature [12, 13].
The PCA, an optimal linear dimension reduction tech-
nique, in which data is projected into a lower dimensional
feature subspace, is a feature extraction method like CVA
method. There are many applications of PCA method in
different diagnosis applications in the literature [14–17].

In this paper, the advantages of using CVA instead of
using PCA in PV system fault detection and classifica-
tion are analyzed. According to the experimental results
CVA method is much superior over the PCA method in
PV system fault detection and classification. Especially
in series resistance degradation fault, while PCA can-
not separate the faulty conditions, CVA provides an ex-
tremely high separability. PCA eliminates the features

(421)

http://doi.org/10.12693/APhysPolA.137.421
mailto:yasemin.onal@bilecik.edu.tr


422 U.C. Turhal, Y. Onal

corresponding to the zero eigenvalues of the covariance
matrix of an attribute space in the transition to a feature
subspace, which also causes loss of information, required
to separate the different classes. Therefore, it is applied
for reduction in size rather than classification. However,
since CVAmaintains the indifference subspace for classes,
it is used to discriminate classes because it holds specific
and distinctive information for each class [18, 19].

In this study, the current, voltage, and power data
are generated by using PSIM. PV panel configurations
used in these simulations are generated as given in [12]
in which fault detection is performed using PCA. Ac-
cording to the results of the analysis, it is seen that the
CVA method, which is proposed for the first time in the
literature by us in the PV system fault detection, gives
considerably better results than the PCA method. As
fault, two cases are handled that are given. The first one
is a series of resistance degradation and the second one is
a partial shading fault. Simulation results for the detec-
tion and classification of these faults are obtained under
healthy conditions, series resistance degradation condi-
tions, and partial shading conditions. According to the
obtained results, PCA method completely fails in case of
serial resistance fault. A very high fault detection rate
such as 97.5% using CVA method is obtained in serial
resistance fault. Likewise, in the case of partial shading,
higher fault detection rate is achieved in CVA method
(99.6%) compared to PCA method (95.4%).

This paper is organized as follows. The PV panel faults
modeling in PSIM and the faults detection and clas-
sification using PCA and CVA methods are addressed
in Sect. 2. The experimental results for the series resis-
tance fault and partial shading fault using CVA and PCA
are given in Sect. 3. Finally, brief conclusions are drawn
in Sect. 4.

2. Modeling of PV panel faults

2.1. Mathematical model of PV panel

One of the most widely used models to reproduce
the I–V characteristic of a PV panel is one or two diodes
equivalent electrical model. To obtain the basic charac-
teristics of the PV cell generally the classical single-diode

Fig. 1. The equivalent circuit of a PV cell.

electrical model is used. In this model, the PV panel is
modeled as an electrical equivalent circuit using a very
small series resistor Rs, a large shunt resistor Rsh, a par-
allel diode D. The photon current Iph is the current
generated proportionally by the surface temperature and
insolation, and is shown as the photon current source
in the equivalent circuit [20]. Figure 1 shows the elec-
trical equivalent circuit of a PV cell. Other models
have been developed to better model of physical events
in a PV panel [21].

The output current I expressed as

I

(
1 +
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Rsh

)
= np Iph −

V − ns
Rsh

−npIsat

exp

q
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+RsI
]
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 (1)

can be calculated using PV output voltage V , electron
charge q = 1.602176565 × 10−19, Boltzmann’s constant
kB = 1.38×10−23 J/K, PV’s cell temperature T , number
of serial cells ns, and number of parallel cells np.

The cell saturation current Isat expressed as

Isat = Irr

(
T

Tr

)3

exp

(
qEg
AkBT

(
T

Tr
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))
(2)

can be calculated using cell temperature T , the band
energy of each PV cell Eg (for crystalline silicon
Eg = 1.12 eV), and the reference temperature of the PV
cell Tr. In the case of the photon current Iph, one can
use expression

Iph =
[
Isso + ki (T − Tr)

]
× Si

1000
. (3)

The value of Iph depends on short circuit current Isso,
short circuit current temperature coefficient ki, input
light intensity Si [W/m2] (solar irradiance), and refer-
ence input temperature Tr (25 ◦C).

2.2. PSIM model of PV panel

PSIM package program is used in the design and sim-
ulation of power electronics and motor control circuits.
It provides fast and accurate results in simulating and
controlling power electronics circuits, and also in analog
and digital motor control.

The photovoltaic panel used in this study is the
FL60-250MBP PV monocrystal panel, whose parameter
is given in Table I [22]. In the simulation circuit of the
PSIM, a solar module is used, which can be used for solar
radiation and ambient temperature changes. The solar
module is shown in Fig. 2. Many parameter inputs are
required to the solar module. Some of these parame-
ters can be obtained from the manufacturer data sheets,
while other panel parameters such as photocurrent, diode
saturation current, series and shunt resistors, and ideal-
ity factor must be obtained by means of trial and error
through the physical model. The shunt resistance Rsh is
provided randomly to PSIM and then PSIM automati-
cally calculate series resistance Rs.
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Fig. 2. The physical model of the PV panel in PSIM.

TABLE IPV panel physical model parameters.

number of cells ns 60
standard light intensity S 1000 W/m2

reference temperature Tref 25 ◦C
series resistance Rs 0.00335 Ω

shunt resistance Rsh 1000 Ω

short circuit current Isc0 8.64 × 4 A
saturation current Is0 1.27 × 10−8 A
band energy Eg 1.12
ideality factor A 1.2
temperature coefficient Ct 0.005184
coefficient ks 0
maximum power Pmax 250 W
current at Pmax Impp 8.21 A
voltage at Pmax Vmpp 30.52
short-circuit current Isc 8.64 A
open-circuit voltage Voc 37.67 V

The PV panel under test is composed of 60 PV cells
connected in series. The simulation tests have been per-
formed under several operating conditions:

• Series resistance degradation mode,

• Healthy condition mode,

• Partially shading modes with different shading ap-
plied on the PV cells.

Due to the activation of bypass diodes the faulty modes
are represented differently in the I–V curve. In the fol-
lowing, we simulated a PV panel with the same specifi-
cations as the one considered in [12].

2.3. Modeling of healthy condition
and series resistance degradation

Figure 3 shows the PSIM simulation circuit for
the different series resistance degradation mode and
the healthy condition mode. The solar irradiation is
1000 W/m2 and reference temperature is 25 ◦C under the

Fig. 3. The PSIM simulation circuit used for the series
resistance degradation mode and healthy mode.

Fig. 4. PV faults on the I–V curve.

standard test conditions (STC) in the simulation cir-
cuit. The simulation is made for four values of series
resistance (Rs = 0.0035 Ω, Rs + 50%Rs = 0.00525 Ω,
Rs +Rs = 0.007 Ω and Rs + 2Rs = 0.0105 Ω). The I–V
curves obtained from the simulation results of healthy
mode, partial shading mode, and the series resistance
degradation mode are shown in Fig. 4.

Since the series resistance value is very small, it may
be neglected in some cases. However, since it has an
effect on output power of PV panel and open-circuit
voltage, it is important to determine the resistance
degradation. Degradations in series resistance cause
a open-circuit voltage Voc decrease in the I–V curve.
Figure 5 shows the P–V curves for different values of Rs.
As shown in Fig. 5, the change of the series resistance re-
sults on the deviation of the maximum power point.

The I–V curves obtained from three different solar ir-
radiation level when the PV panel operates in healthy
mode are shown in Fig. 6. Solar irradiation are 850, 845,
and 832W/m2. The short-circuit current of the PV panel
varies with solar radiation. The PV panel produces less
current to low solar irradiation. Simulation results are
consistent with the datasheet information given under
STC with series resistance of 0.0035 Ω.
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Fig. 5. The P–V curves for different values of Rs.

Fig. 6. The I–V curves under healthy condition mode.

2.4. Analysis of the partial shading fault mode

Total or partial shading conditions cause very seri-
ous problems in PV systems. In PV panels, when the
shaded cells of PV panel is less than the illuminated cell
of the PV, the current produced by the illuminated cells
is larger than the current produced by the shaded cells.
The diode of shaded cells reverse biased and the power
will be lost in the shaded cells. To overcome power loss,
the PV panel is composed of solar cells connected by se-
ries and a bypass diode connected by parallel under the
condition of partial shading.

The shading mode is applied to the three sub-strings
as irregular irradiations. To simulate the effect of shad-
ing, the PV panel under test is composed of 60 PV cells
connected in series and three sub-strings of 20 PV cells.
Three sub-strings are equipped with three bypass diodes;
each one is connected in antiparallel to protect a PV sub-
string. Figure 7 shows the simulation circuit of the three
sub-strings in PSIM.

Under partial shading, the current flows through the
bypass diode instead of the shaded string for the bypass
diodes are reversely biased. The power will not be lost in
the shaded cells and only the illuminated cells generate
power.

Fig. 7. The simulation circuit of the three sub-strings
for partial shading fault.

Fig. 8. The I–V curves under 12 cell shading.

Figures 8–11 show the I–V curves for four configura-
tions of shading. Multiple peaks occur in all I–V curves
depending on the type of shading applied in the shaded
conditions. These peaks indicate that the efficiency of
the PV system is reduced because the maximum power
is reduced under shading. The PV cells of the panel are
tested under irregularly irradiation when partial shaded.
Depending on the location and number of cells, in which
partially shading occurs on the PV panel, the I–V curves
obtained from the simulation results vary.

Figure 8 shows the obtained I–V curve when the first
sub-string is partially shaded. The 12 PV cells of the
first sub-string are shaded. The shaded cells close a by-
pass diode and the diode opens faulty sub-string. The
closed diode prevents the shaded cells from heating up
and becoming hot spots. Due to the loss of the sub-
string, a steep drop in voltage occurs in the I–V curve.
The 12 PV cells of the first sub-string and 6 cells of the
second sub-string are shaded.
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Fig. 9. The I–V curves under 18 cell shading.

Fig. 10. The I–V curves under 24 cell shading.

Fig. 11. The I–V curves under 2 cell shading.

Figure 9 shows the obtained I–V curve when the first
and second sub-strings are partially shaded. The shaded
cells close two bypass diode and the diodes open the
faulty sub-strings. Figure 10 shows the 12 shaded cells
of the first sub-string and 12 shaded cells of the second
sub-string. The effect of shaded cells on the output cur-
rent is clearly illustrated by the two peaks occurring on
the I–V curve.

The one PV cells of the first sub-string and one PV
cells of the third sub-string are shaded given as in Fig. 11.
The effect of shaded cells on the output current is clearly
illustrated by the three peaks occurring on the I–V curve.

2.5. Fault detection and classification

In this paper fault detection and classification in a PV
system is performed using a supervised classification al-
gorithm called CVA. CVA method can also be used both
for fault detection and classification. In Fig. 4, the simu-
lation results obtained under one healthy and four faulty
conditions are given. Three of these faults are degra-
dation of series resistances and one of these is partial
shading.

The projection of the simulated data on CVA feature
space is given in Fig. 12. As it can be seen from Fig. 12,
CVA can detect and classify all the conditions given in
Fig. 4 from each other successfully. However, the case
is not the same for PCA. Using PCA only the partial
shading fault detection can be performed but degraded
series resistance cannot, as shown in Fig. 13.

Fig. 12. Data projected onto CVA feature space.

Fig. 13. Data projected onto PCA feature space.
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Fig. 14. Supervised classification scheme.

A supervised classification scheme includes a training
step and then a testing step as given in Fig. 14. That
is why the dataset is first divided into two groups as
one of them is for training and the other is for test-
ing. In the training step, the classification model that
practically corresponds to the feature extraction process,
is constructed using the training data set. Once the
model is constructed, then using the test data set clas-
sification performance of the model is evaluated. In this
paper, the classification results are evaluated using the
method PCA, for the same database for comparison pur-
poses. Mathematical formulation of these two methods,
CVA and PCA, are given below.

2.6. Feature extraction using PCA

The PCA method is the process of obtaining eigenval-
ues and eigenvectors of covariance matrices for normal
distributions, also known as optimal linear dimension re-
duction [23, 24]. The aim of this method is the projec-
tion of the data from a high dimensional data space into
a lower dimensional feature subspace. This projection is
realized by using eigenvalues and eigenvectors obtained
from eigenvalue-eigenvector decomposition of the covari-
ance matrix of normal distribution. The PCA is based on
the elimination of feature components along the eigenvec-
tors corresponding to the smallest eigenvalues and keep-
ing the feature components along the eigenvectors corre-
sponding to the largest eigenvalues. Thus, this process
reduces the number of dimensions in the feature space,
however such projection often results in loss of informa-
tion that distinguishes different classes.

All objects in the database are represented by vectors
with the size of 1 × m. Here, m denotes the number
of attributes of the objects. Thus, each object in the
database corresponds to a point in a m-dimensional at-
tribute space. With the PCA method applied in the at-
tribute space of the database, the data is projected into
a lower dimensional feature subspace, where correlation
among them is reduced. The PCA gives the basis vectors
for this feature subspace. Each basis vector is m-length
and is the eigenvector of the covariance matrix with the
size of m×m, which is generated in the attribute space.
The formulation of PCA is as given below.

Let us assume X1, X2, . . . , XN , where {Xi} =
(xi1, . . . , xim), is the training set of objects defined in
the m-dimensional attribute space. The average of these
objects X̄ is understood as

X̄ =
1

N

N∑
i=1

Xi, (4)

and the covariance matrix C can be obtained

C =
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)
T
. (5)

Eigenvalue-eigenvector decomposition is applied to the
covariance matrix given in (5). One can choose k signif-
icant eigenvectors (e1e2 . . . ek), which are corresponding
to the k largest eigenvalues. These eigenvectors span the
lower dimensional feature subspace. Taking the projec-
tion of an object Xi onto these eigenvectors, Xi can be
defined in the feature subspace, as shown in (6):

Yi = (XiE)E, i = 1, 2, . . . , N,

E =


↑ ↑
e1 . . . ek
↓ ↓

 , (6)

where Yi is defined as the projection of the vectorXi, that
belongs to the attribute space onto the feature subspace,
and E is the eigenmatrix whose columns are constructed
from the k largest eigenvalues.

2.7. Feature extraction using CVA

The CVA is a subspace method that was first used in
voice recognition. It eliminates the unwanted informa-
tion between different pronunciations of the same word
due to environmental influences, temporal changes, and
personal differences. As a feature extraction method,
CVA is based on calculating a unique vector that is invari-
ant to each word called a “Common Vector”. It represents
common or invariant properties of the word class in the
training set. For each word class which is composed from
the different pronunciations of the same word caused by
the reasons mentioned above, the method is applied sep-
arately, taking only into account the within-class distri-
butions. Thus, for each word class, by subtracting a sin-
gle common feature vector that defines word is obtained.
This common vector spans the indifference subspace of
the word class [11].

In many pattern classification problems, number (N)
of the objects in the training set of each class are equal
or less than the size (m) of the attribute space (N ≤ m).
This condition is called insufficient data case [24]. In this
case {Xc1, Xc2, . . . , Xcn} and Xci = (xci1, x

c
i2, . . . , x

c
im),

where c is the class numerator, while n is the total object
number in class c. Within-class covariance matrix can be
found as

Cc =
1

n

n∑
i=1

(Xci − X̄c)(Xci − X̄c)
T. (7)
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Here, X̄c = 1
n

∑n
i=1Xci is the mean vector of class

c. Then the eigenvalue-eigenvector decomposition is ap-
plied to the class covariance matrix obtained in (7).
From this decomposition, the m-dimensional feature
space spanned by all the eigenvectors can be divided
into two subspaces, such as (n − 1)-dimensional dif-
ference subspace and (m− n+ 1)-dimensional orthogo-
nal indifference subspace. In the insufficient data case,
where (n ≤ m), the (m− n+ 1) eigenvalues will be zero
and the feature subspace spanned by the eigenvectors cor-
responding to the zero eigenvalues is called indifference
subspace and the difference subspace is the compliment of
the indifference subspace. Then for the insufficient data
case a common vector for each class can be obtained by
projecting any vector in that class onto the indifference
feature subspace. It is expressed as

vecccom = XciEc. (8)
The columns of the matrix

Ec =


↑ ↑
ec1 . . . eck
↓ ↓


where k = (m−n+1), are the eigenvectors corresponding
to zero eigenvalues of the c-th class covariance matrix, or
in other words — the vectors that span the indifference
feature subspace.

The reasoning mentioned above explains the determi-
nation of the common vector which is unique in insuf-
ficient data case, where (n ≤ m). If the considered case
is sufficient data case (m ≤ n), in short, if the num-
ber n of objects is larger than the size of the attribute
space dimension m, the zero eigenvalues will not be ob-
tained from the eigenvalue eigenvector decomposition of
the class covariance matrix. This means that the indif-
ference feature subspace has disappeared, so the common
vector for the class will just be the zero vector.

However, Gulmezoglu et al. showed that, in the case
of sufficient data, indifference feature subspace does not
disappear. Because some eigenvalues of the within-class
distribution matrix are too small due to the others, and
the class common vector still can be obtained [24]. Class
common vectors are obtained by projecting the aver-
age vector of the class onto the indifference feature sub-
space that is spanned by the eigenvectors whose value is
sufficiently small than the others.

3. Experimental studies

Two different experimental studies are performed in
this study for two types of PV fault diagnosis, where
one of them is degradation of series resistance and the
other one is partial shading. PV faults for the application
are simulated using the PSIM program. The data ob-
tained by the simulation in PSIM are analyzed with CVA
method proposed in this study and also PCA method is
applied to compare the analysis results.

Both of the methods CVA and PCA are supervised
learning algorithms as they require a training process.
In the training process, the classification model is con-
structed using the training data set. Once the model is
constructed, the performance of the test set is evaluated
using the classification model. In the simulated database,
the data matrix is composed according to

X = [V I P ] (9)
The data matrix X contains three attributes, i.e., the
voltage V , the current I and the power P produced by
the PV system.

3.1. The series resistance degradation

In the first experimental study series resistance degra-
dation fault diagnosis with CVA is carried out. In or-
der to evaluate the performance of CVA method over
PCA, the diagnosis is performed with using also PCA.
The database is constructed from the simulation results
of healthy mode and three degraded resistance mode, i.e.,

Rsadd
= 50%Rs, Rsadd

= Rs, and Rsadd
= 2Rs.

As it can be seen from the behaviour of I–V curves in
Fig. 4, there is a redundancy in the data among the
healthy condition and the three faulty conditions. Each
of the I–V curves are composed of 101 samples that are
recorded in one minute. These 101 samples are enough
to sweep a complete I–V characteristic of the system.
The data matrix is constructed as in the form given
in (9). Thus, a data matrix is a 404 × 3 dimensional
matrix, where each row of its corresponds to a sample,
and each column corresponds to an attribute such as V ,
I and P , as shown in Fig. 13. Using the data matrix the
training set (67% of all data) and the test set (remain
data) that are composed from the samples selected ran-
domly from the data matrix in each time are constructed
and the classification-diagnosis results are obtained. This
procedure is repeated 10 times and the mean of the re-
sults is given as the classification (diagnosis) performance
of the model.

As it can be seen in Fig. 15, we cannot classify the
Rs degradation faults using PCA, because all the dif-
ferent classes, healthy, Rsadd

= 50%Rs, Rsadd
= Rs and

Rsadd
= 2Rs, are displayed very close to each other in the

PCA feature subspace. That is why the different classes
cannot be differentiated. Degraded series resistance fault
diagnosis was studied. In the literature using PCA also
the same results were obtained. Authors however stated
that additional data processing or/and additional infor-
mation should be included or done in their study in or-
der to separate the healthy case from the degraded series
resistance [12].

On the contrary, using CVA method in the same fault
condition as it is proposed in this study, we obtained
extremely high classification rates without including ad-
ditional data processing or/and additional information as
stated. The reason can easily be seen from the CVA fea-
ture space given in Fig. 16. The data scatter lines in CVA
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Fig. 15. Data projected onto the PCA feature space.

Fig. 16. (a) Training data, (b) test data projection
onto the CVA feature space.

space, corresponding to each condition such as healthy
Rsadd

= 50%Rs, Rsadd
= Rs and Rsadd

= 2Rs, can easily
separable from the others. That is why there are obtained
extremely high recognition rates such as 97.5%.

3.2. Partial shading fault mode

In the second experimental study partial shading fault
diagnosis with CVA is carried out. In order to evaluate
the performance of CVA method over PCA, the diagnosis
is performed with using also PCA. The database is con-
structed using the simulation results of healthy condition
and also the simulation results of partial shading condi-
tions given in Figs. 8–11. In the database each partial

TABLE II

Classification percentages in partial shading
fault detection.

Method CVA PCA
classification
performance [%]

99.6 95.4

shading condition (class) corresponds to a class. Each of
the class has three relevant I–V curves that are obtained
under different irradiation conditions.

As it is in the first experimental study, each of the I–V
curves is composed of 101 samples that are recorded
in one minute. Thus, each class has a 303 × 3 dimen-
sional data matrix that includes the

[
V
η I

P
η

]
measure-

ments taken under different irradiation conditions. Here,
η is used for the elimination of the environmental effects
and is called efficiency. In total for 5 different working
conditions such as one healthy and four partial shading,
the total data matrix dimension is 1515 × 3. Using the
data matrix the training set (67% of all data) and the test
set (remaining data) composed from the samples selected
randomly from the data matrix are constructed and the
classification-diagnosis results are obtained. This proce-
dure is repeated 10 times and the mean of the results is
given as the classification-diagnosis performance of the
model. The classification results are given in Table II.

4. Conclusion

In this paper PV fault detection and classification
method, CVA, is proposed for fault diagnosis. In the
study two types of fault are taken into account. One of
them is series resistance degradation and the other one is
partial shading. The CVA method’s performance is eval-
uated with PCA method’s performance, which is recently
proposed for fault detection.

The data used in the study is simulated using PSIM.
For series resistance degradation fault, four simulations
that correspond to one healthy and three degraded series
resistance, are performed. Using CVA it is shown that
in CVA feature space the classes could be differentiated
from each other successfully, and 97.5% classification per-
formance is obtained which is extremely high. However,
using PCA, series resistance degradation cannot be de-
tected as shown in PCA feature space. In the second fault
condition, partial shading, CVA also gives higher clas-
sification performances according to PCA. Using CVA
method we obtained 99.6% classification rate, while using
PCA method the classification rate obtained is 95.4%.
These results are not surprising because PCA method
eliminates the useful information required to differenti-
ate the classes from each other in transition to feature
space but CVA method keeps the specific and distinctive
information for each class. Therefore, PCA is successful
for dimension reduction rather than classification while
CVA is successful in classification.
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In addition, the fault detection and classification
method proposed in this paper, only requiring the avail-
able PV voltage, current, and power values, is not sensi-
tive to the weather conditions and also the sudden vari-
ations in the environmental conditions such as temper-
ature and solar irradiation. Moreover, it performs the
classification independently of any particular PV size.
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