
Vol. 137 (2020) ACTA PHYSICA POLONICA A No. 3

Dynamics of Electric Field Induced Deformations
in Homeotropic Bent-Core Nematic Layers
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Dynamics of deformations induced by dc electric field in homeotropically aligned layers containing a flex-

oelectric nematic liquid crystal composed of bent-core molecules was studied numerically. The respond times,
characterizing the development of deformations after switching on the external voltage, and the decay times,
describing the relaxation of deformation after switching off the voltage, were calculated for various values of flexo-
electric coefficients. The results were compared with analogous behavior occurring in typical calamitic nematics. It
was found that the unique properties of the bent-core nematic do not cause significant difference in the dynamics
of deformations.
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1. Introduction

Nematic liquid crystals composed of molecules with
bent core exhibit some unique features compared to con-
ventional liquid crystals [1]. In particular, the ratios
between their elastic constants are expressed by the in-
equalities k11 > k33 > k22 which differ from typical rela-
tions found in nematics composed of calamitic (rod-like)
molecules [2]. The bent shape of molecules gives rise
to strong flexoelectric properties [3, 4]. The dielectric
anisotropy is usually negative [5]. The aim of the present
work was to check whether these properties influence the
dynamics of deformations induced by external electric
field in plane-parallel nematic layers. For this purpose,
the homeotropic layer containing the bent-core nematic
material was modeled numerically. The deformations,
occurring after application of external field and relax-
ation after switching off the field, were simulated. The
time variation of optical transmission of the system com-
posed of the nematic layer placed between crossed polar-
izers was calculated. Three characteristic times defined
in Fig. 1, usually used as dynamic parameters describing
the rise as well as the decay of deformation, were deter-
mined. They were calculated as functions of bias voltage
and of flexoelectric coefficients.

2. Geometry and parameters of the system

The nematic layer of thickness d = 10 µm confined be-
tween two plates parallel to the xy plane of the Cartesian
coordinate system and placed at z = ±d/2, was taken
into account. The easy axes made the angle θ0 = 1◦ with
the z axis which ensured nearly homeotropic boundary
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Fig. 1. Definitions of characteristic times describing
the dynamics of deformation of the nematic layer.

conditions. The director n was parallel to the xz plane.
Its orientation was described by the angle θ(z, t), mea-
sured between n and the z-axis. The limiting plates
played the role of electrodes. The lower electrode was
earthed. The deformation arose after application of
the voltage step of amplitude U . The decay of dis-
tortion occurred when the zero voltage was applied to
the state of saturated static deformation. The model
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bent-core nematic was characterized by the elastic con-
stants k11 = 6.0 × 10−12 N, k22 = 1.2 × 10−12 N, and
k33 = 3.5× 10−12 N [6]. Negative dielectric anisotropy,
∆ε = −4 was adopted, and the value of ε⊥ was 16.
The flexoelectric properties were expressed by the sum
of flexoelectric coefficients e = e11 + e33, which was
varied between 0 and 50 pC/m. The rotational vis-
cosity γ1 = 0.1093 N s m−2 and the surface viscos-
ity κ = 2.6 × 10−8 N s m−1 determined the rheologi-
cal properties [7, 8]. The backflow effect was neglected.
The interactions between nematic and boundary surfaces
were determined by the anchoring strength parameter
W = 10−4 J m−2. In order to calculate the optical trans-
mission, the refractive indices no = 1.520 and ne = 1.672
and a wavelength of λ = 589 nm were adopted. The
transport of ionic charge of concentration N0 = 1018 m−3

was also taken into account. It was described in terms
of a weak electrolyte model which was used in earlier
paper [9, 10]. It is presented in Appendix.

3. Method

The system was considered as one-dimensional. Its
time evolution was given by the set of equations which
described balance of elastic, viscous, dielectric, and flex-
oelectric torques acting in the bulk. The boundary con-
ditions were expressed by two equations of balance of
elastic, viscous, flexoelectric, and anchoring torques for
the boundaries [9]. The electrical properties of the layer
were described by the Poisson equation, two equations
of continuity of the ion fluxes which govern the trans-
port of ions in the bulk and four equations describing the
electrode processes which play the role of boundary con-
ditions. The quasi-blocking properties of the electrode
contacts were assumed. Detailed forms of all equations
are given in Appendix, where the numerical method is
also described.

4. Results and discussion

The computations revealed the time variation of di-
rector configurations described by the angle θ(z, t), as it
is exemplified in Fig. 2. The varying director distribu-
tions allowed to calculate the time dependences of the
optical transmission of the layer placed between crossed
polarizers, T (t). Optical transmission of the undistorted
homeotropic layer was practically zero. Small deforma-
tions of the director distribution induced by bias voltage
led to initial increase of transmission. Stronger defor-
mations resulted in oscillations of transmission, which
were beyond our interest. The widths of voltage ranges
were limited to the lowest values which corresponded to
transmission varying between zero and 100%. Figure 3
shows exemplary time variations of transmission calcu-
lated for arising of deformation after application of the
voltage as well as for decay of deformation after switching
off the voltage. The dependences of this kind allowed to

Fig. 2. Example of the director orientation angle θ as
a function of time and coordinate for arising (a) and
decaying (b) of deformation; U = 1.8 V, e = 50 pC/m.

Fig. 3. Optical transmission as a function of time after
application of voltage step (a) and after switching off the
voltage (b) for a bent-core nematic; values of voltage (in
V) are given at the curves; e = 50 pC/m.
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Fig. 4. The delay time (a), the rise time (b) and the
decay time (c) as functions of voltage for a bent-core ne-
matic; the values of flexoelectric coefficients e (in pC/m)
are given at the curves.

determine the characteristic times which describe the dy-
namics of deformations. The times are plotted in Fig. 4
for various flexoelectric coefficients e. It is evident that
the delay times and the rise times had similar values.
They decreased monotonically with voltage. They also
decreased significantly with flexoelectric coefficient. The
decay times were much shorter. Their voltage depen-
dence was more complex. There was some voltage for
which τoff reached a minimum. At small voltages, the
stronger flexoelectric properties led to longer decay time.
Reverse dependence was found for high voltages.

The results presented above can be compared with cor-
responding dependences occurring in calamitic nemat-
ics. For this purpose, additional computations were
performed for typical nematic material characterized

Fig. 5. The decay time as function of voltage for typ-
ical calamitic nematic; the values of flexoelectric coeffi-
cients e (in pC/m) are given at the curves.

by k11 = 6.0 × 10−12 N k22 = 3.8 × 10−12 N,
k33 = 7.5× 10−12 N, and ∆ε = −0.7. It was found
that τdelay and τon obtained for typical calamitic nematic
were qualitatively identical with those obtained for the
bent-core nematic. On the contrary, the decay time τoff

slightly increased with voltage and decreased with flexo-
electric coefficients (Fig. 5).

The dynamics of deformations occurring in nematic
layers is described sometimes by means of the time con-
stants calculated from linear part of the time dependence
of logarithm of the optical retardation of the layer. How-
ever in the present case such dependences were not linear,
so the time constants could not be determined.

Dynamics of deformations is governed by the torques
acting on the system. Arising of deformations occurs
due to destabilizing dielectric torque acting on the whole
layer. The flexoelectric torque is destabilizing in vicinity
of the negative electrode and stabilizing in the neighbor-
hood of the positive electrode. This asymmetry is due to
influence of ionic space charge which contributes to elec-
tric field distribution in the layer [11]. The flexoelectric
torques acting on the boundary surfaces have negligible
influence because they are overwhelmed by strong sur-
face anchoring strength. The decay of deformations is
driven mainly by the surface interactions restoring the
homeotropic structure, however, the elastic constant also
affects this process which is illustrated by the difference
between the decay times calculated for bent-core and
calamitic nematics (Figs. 4c and 5, respectively). This ef-
fect can be explained if the torque equation (A1) is taken
into account. The elastic torque depends on ratio of elas-
tic constants kb = k33/k11 which is significantly larger for
calamitic nematic (kb = 1.25) than for the bent core ma-
terial (kb = 0.58). The deformation of the homeotropic
layer is influenced mainly by the kb ratio due to the term
kb cos2 θ of the torque. The twice larger value of kb for
calamitic substance makes it more rigid which results in
twice shorter decay time.
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Appendix A: The set of equations and the
outline of the numerical method [9, 10]

The time evolution of the considered deformation was
described by the following set of equations:

• equation of balance of elastic, viscous, dielectric, and
flexoelectric torques for the bulk
1
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where ζ = z/d is a reduced coordinate;
• two equations of balance of elastic, viscous, flexoelec-

tric and anchoring torques for the boundaries which play
the role of boundary conditions, for ζ = −1/2:
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where ω = Wd/k11;

• the Poisson equation
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with the boundary conditions V (−1/2, t) = 0 and
V (1/2) = U for the rise of the deformation and
V (−1/2, t) = V (1/2) = 0 for the decay;

• two equations of continuity of the ion fluxes which
govern the transport of ions in the bulk based on the
weak electrolyte model
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where β and α are the generation and recombination con-
stants, respectively [12], and
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denote the fluxes of ions of given sign. The z-components
of the mobility and diffusion coefficients are given by
µ±zz = µ±⊥+ ∆µ± cos2 θ and D±zz = D±⊥ + ∆D± cos2 θ, re-
spectively, where ∆µ± = µ±‖ −µ

±
⊥ and ∆D± = D±‖ −D

±
⊥

denote the anisotropies of both quantities;
• four equations describing the electrode processes

which play the role of boundary conditions for ζ = −1/2:
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and for ζ = 1/2:
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where the parameter Kr describes the quasi-blocking
properties of the electrode contacts. The parameter L is
the thickness of the sub-electrode region, of the order of
several molecular lengths, where the electrode reactions
occur. The quantities ∆ϕ(±1/2, t) = |E(±1/2, t)|qL are
the electric field induced changes of the energy barriers
between the nematic and the electrodes.

The initial conditions for the orientation angle in the
case of arising of deformation were given by θ (ζ, 0) =
θ0 = 1◦. The initial conditions for the potential were im-
posed by V (ζ, 0) = Uζ + U/2 and those for the ion con-
centrations by N±0 (ζ, 0) = N0. In the case of decay of de-
formation, the initial conditions were determined by the
variables describing the static state of the layer subjected
to the chosen voltage, θ(ζ, 0), V (ζ, 0), and N±(ζ, 0).

The above set of equations was solved numerically.
The variables θ(ζ, t), V (ζ, t), and N±(ζ, t) were approx-
imated by their discrete values θij , Vij , and N±ij defined
in the nodes of the M × N regular lattice. The indices
i = 1, . . . ,M determined the positions along the z coor-
dinate while j = 1, . . . , N determined the discrete mo-
ments of time. The difference equations obtained from
Eqs. (A4)–(A12) formed the sets described by tridiagonal
matrices and were solved by means of the sweep method.
In order to solve the torque Eqs. (A1)–(A3), the actual re-
laxation of director in a nematic sample, occurring when
the torques of different origin do not balance, was sim-
ulated. Namely, the total torque Γ ij acting on the di-
rector in the node ij of the lattice was calculated. In a
real sample, this torque rotates the director. The new
director orientation was found by adding a small vector
∆n = cΓ × n, where c is a suitably chosen constant en-
suring that |∆n| � 1. The absolute value of new director
was then normalized to 1 and the corresponding orienta-
tion angle θij was calculated. As a result, the value of
Γ ij was gradually decreased. All the procedures men-
tioned above were repeated sufficiently many times for
the whole lattice. This yielded the sets of values θij , Vij ,
and N±ij which approximated well the functions θ(ζ, t),
V (ζ, t), and N±(ζ, t) satisfying Eqs. (A1)–(A12).

The results allowed us to calculate the time dependent
phase difference between the ordinary and extraordinary
rays passing through a layer placed between crossed po-
larisers, expressed by the formula

∆Φ(t) =
2πd

λ
(A13)

×

 1/2∫
−1/2

neno(
n2
e cos2 θ (ζ, t) + no sin2 θ (ζ, t)

)1/2
dζ − no

 .

as well as the optical transmission of the system,
T = sin2 (∆Φ/2). Finally, the times τdelay, τon, and τoff

were determined.
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