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The problem of detecting non-classical correlations of states of many qudits is incomparably more involved

than in the case of qubits. One reason is that for qubits we have a convenient description of the system by
the means of the well-studied correlation tensor allowing to encode the complete information about the state in
mean values of dichotomic measurements. The other reason is the more complicated structure of the state space,
where, for example, different Schmidt ranks or bound entanglement comes into play. We demonstrate that for
three-dimensional quantum subsystems we are able to formulate nonlinear entanglement criteria of the state with
existing formalisms. We also point out where the idea for constructing these criteria fails for higher-dimensional
systems, which poses well-defined open questions.
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1. Introduction

For complex quantum systems, we distinguish between
classical correlations of separable states, i.e., those, which
can be obtained by a prearranged preparation of each
subsystem individually, and entanglement, which goes
beyond this scheme. While separable states can be per-
fectly correlated in one way at a time, entangled ones may
reveal perfect correlations, say, whenever the same quan-
tity is measured by two observers. This observation has
led to a serious debate about the most fundamental as-
pects of nature. First, Einstein, Podolsky, and Rosen [1]
have asked if quantum mechanics can be supplemented
with additional, hidden parameters, and later it was an-
swered that if it was indeed so, these parameters would
need to violate certain reasonable assumptions, such as
locality [2] or noncontextuality [3].

The Bell theorem [2] has consequences of not only
philosophical nature, but has also found applications in
certain communication tasks. In particular, having a Bell
inequality violated by a quantum state is equivalent to
an advantage in a distributed computing [4]. Specifi-
cally, if protocol users share an entangled state, they can
achieve a higher probability of locally getting the cor-
rect value of a certain function than when they are al-
lowed only to communicate classically. The role of the
Bell theorem has been also pointed out in the context of,
e.g., cryptography [5].

Therefore, schemes of entanglement detection have
gathered a lot of attention for both fundamental and
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practical reasons. The task is very simple for pure states,
which practically never occur in a real life. However, for
mixed states, it is still an open question. One method
is to apply a positive, but not a completely positive
map to one of subsystems [6, 7]. This should drive an
entangled state out of the set of physically admissible
density operators. By the Jamiołkowski–Choi isomor-
phism [8] we can equivalently use an entanglement wit-
ness, a composite observable taking negative mean val-
ues only for entangled states. In this manner, we can
certify all forms of entanglement, but we do not know
all the non-completely positive maps. In order to make
entanglement detection schemes more efficient, nonlinear
criteria were introduced. They appeared also in partic-
ular context of necessary conditions on states to violate
Bell inequalities [9–11]. A state can violate the Werner–
Wolf–Weinfurter–Żukowski–Brukner inequalities only if
(but not necessarily if) certain of its squared elements of
the correlation tensor add up to more than 1. A sim-
ilar condition appeared in the context of so-called geo-
metrical inequalities [12], which treat correlations of the
system as a multidimensional vector not belonging to a
convex set of local realistic models. This approach re-
sulted in geometrical entanglement criteria [13], which
are highly versatile, and quadratic ones, particularly easy
to construct [14–16].

Only recently, Pandya, Sakarya, and Wieśniak have
discussed using the Gilbert algorithm [17] to classify
states as entangled and construct state-tailored entangle-
ment witnesses for, in principle, any system [18]. How-
ever, this method requires the full knowledge of the state.
In contrast, with quadratic criteria, we attempt to certify
entanglement with only two measurements series, which
brings the necessary experimental effort to minimum.
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Up to date, these methods turn out to be successful
mainly for collections of qubits, as their states are con-
veniently described by the means of the correlation ten-
sor. The deficit of the Bell inequalities and entanglement
criteria for higher-dimensional constituents of quantum
systems follow also from our inability to generalize this
tool. The Pauli matrices, the foundation of this achieve-
ment, have many interesting properties, each contribut-
ing to the success. They are Hermitian, unitary, trace-
less, and for individual subsystems their measurements
are complete (except for the unit matrix), meaning that
the individual mean values contain the full information
about the statistics of outcomes, and they have unbi-
ased bases as their eigenbases. In contrast, one of the
straight-forward generalizations, the Gell-Mann matri-
ces, do not satisfy any commutativity relations, which
significantly complicates formulating a correlation ten-
sor. While they can be chosen to be orthogonal with
respect to the Hilbert–Schmidt product, they are highly
degenerate, which makes it complicated to find comple-
mentarity relations.

In this contribution we show that the notions known
from the formalism of the tensor product for multiqubit
states can be almost straight-forwardly applied to qutrits,
when we associate complex roots of infinity to local mea-
surement outcomes. We choose to generalize quadratic
entanglement criteria, as they are particularly simple to
derive (no optimization over the full set of product states)
and experimentally friendly (only two measurements se-
ries necessary to certify entanglement for some states).
In particular, this generalized tensor product is a subject
to linear and quadratic bounds. Basing on these bounds,
we can derive quadratic (and geometrical, i.e., Cauchy–
Schwarz) entanglement criteria. However, for systems
with subsystem dimension larger than 3, this is still an
open challenge.

2. Formalism of many-qubit states

As we have already mentioned, the success of describ-
ing and analyzing the states of many qubits is due to
the particularly convenient representation through a cor-
relation tensor. Its elements are mean values of ten-
sor products of the Pauli matrices, Tī = 〈oī〉, oī =

σ
[1]
i1
⊗ σ[2]

i2
⊗ . . .⊗ σ[N ]

iN
, ī = (i1, i2, . . . , iN ), and the Pauli

matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1)

Operators oī form an orthogonal basis, (oī, oj̄) =

Troīoj̄ = 2Nδī,j̄ . This orthogonality can have three differ-
ent reasons. When either oī or oj̄ is the unit matrix, the
scalar product vanishes as the other operator is traceless.
When oī and oj̄ commute, but differ from each other and
neither of them is the unit matrix, their eigenvalues are

distributed in such a way that their product adds up to
zero. Finally, when they do not commute, they anticom-
mute and their eigenbases can be chosen to be unbiased,
i.e., all scalar products between any vector from one basis
with any one from the other are equal in modulo.

For a given state ρ, let the correlation tensor be a set
of averages {Tī} = {Trρoī}. To fulfill the normalization
constraint, T00...0 ≡ 1, but also for a single qubit we have
the pronounced complementarity relation [19]:

3∑
i=1

〈σi〉2 ≤ 1. (2)

This relation can be straightforwardly generalized to any
set of mutually anticommuting operators (where Z is
some set of superindex values):

{oī, oj̄}ī,j̄∈Z ∝ δī,j̄ ⇒
∑
ī∈Z

T 2
ī ≤ 1 (3)

with anticommutation brackets {oī, oj̄} = oīok̄ + oj̄oī.
Notice that operators oī and oj̄ anticommute if su-
perindices differ on odd number of positions, ex-
cluding those, where one superindex has “0”. In
Ref. [14] this property was further generalized to cut-
anticommutativity. Namely, consider two operators,
o1 = o

[A]
1 ⊗ o[B]

1 and o2 = o
[A]
2 ⊗ o[B]

2 . We say that they
anticommute with respect to cut A|B if they anticom-
mute on either of the subsystem. Consequently,
{o1, o2}A|B = 0⇒ 〈o1〉2 + 〈o2〉2 ≤ 1 (4)

for states, which are factorizable with respect to the cut.
Due to convexity, the same bound applies to separable
states.

Using Eq. (4) quadratic entanglement criteria were
formulated in the following way in Ref. [14]. We choose
a set of the Pauli matrix products {oj̄}j̄ with arbitrarily
many elements. We create a graph of commutativity, in
which vertices denote operators from the set, which are
connected by an edge if they anticommute. We now find
the independence number for the graph and repeat the
procedure for all relevant cuts into subsystems. If the
independence number is largest for the first graph, the
set can be used to certify entanglement. The criterion is
that entanglement is certified when the square of sums of
mean values of the operators is larger than independent
numbers for all cuts. In Ref. [15] this method was further
developed. First, the authors limited themselves to only
two operators for each entanglement witness, and sec-
ond, a different entanglement criterion is used to certify
entanglement with respect to every cut, but still, they
can be measured jointly in two measurements series. We
will now take this path for a collection of qutrits.

3. Correlation tensor formalism
for many qutrits

We are now looking for a description of a qutrit, in
which each measurement gives us a complete information
about the probability distribution of three outcomes. To
remove any dependences, we expect the measurements
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on individual qutrits used for establishing the correlation
tensor to be have mutually unbiased bases (MUBs) as
their eigenbases. Lastly, since we want to formulate the
complementarity relation similar to Eq. (4), so we expect
the eigenvalues to be of modulo 1. A family satisfying
these requirements for three-dimensional subsystems are
the Heisenberg–Weyl matrices. They are given as

h0 =

 1 0 0

0 1 0

0 0 1

 ,

h1 =

 1 0 0

0 ω 0

0 0 ω2

 , h2 =

 0 1 0

0 0 1

1 0 0

 ,

h3 =

 0 1 0

0 0 ω

ω2 0 0

 , h4 =

 0 1 0

0 0 ω2

ω 0 0

 ,

h5 = h†1, h6 = h†2, h7 = h†3, h8 = h†4 (5)
(with ω = exp(2πi/3)). Notice that any Heisenberg–
Weyl operator can be expressed as ωi0hi11 h

i2
2

with i0, i1, i2 = 0, 1, 2.

First, let us show that this representation of a state is
complete, that is, the data can be used for state tomog-
raphy. As shown in Ref. [20], a state can be given as

ρ = −11 +

8∑
m=1

2∑
k=0

p(m, k)|mk〉〈mk|, (6)

where m enumerates the mutually unbiased basis, the
eigenbasis of hm, |mk〉 is the k-th state of this basis
and p(m, k) = 〈mk|ρ|mk〉. Now, consider the following
quantity:

Tm = Trρh†m. (7)
For simplicity, let us represent complex numbers and
operators as vectors, i.e., a = (Rea, Ima) and o =
1/2(o+o†,− i(o−o†)). Furthermore, let us denote 1,ω, ω2

as v0 = (1, 0),v1 =
(
− 1

2 ,
√

3
2

)
,v2 =

(
− 1

2 ,−
√

3
2

)
. Tak-

ing into account the scalar product between these vectors,
we get

Tm · om =

(
2∑

k=0

p(m, k)vk

)
·

(
2∑

l=0

vl|ml〉〈ml|

)
=

−11
2

+
3

2

2∑
k=0

p(m, k)|mk〉〈mk|,

⇒
2∑

k=0

p(m, k)|mk〉〈mk| = 2Tmom + 11
3

, (8)

which, together with Eq. (6) allows to parametrize the
density matrix as

ρ =
2

3

8∑
m=1

(−11 + Tmom) .

When the usual tensor product is used, this formula
is extended by replacing products of probabilities with
joint probabilities, p(k,m)p(l, n) → p(k,m, l, n) =
(〈k,m| ⊗ 〈l, n|)ρ(|k,m〉 ⊗ |l, n〉).

Let us now consider the complementarity relations be-
tween tensor products of the Heisenberg–Weyl operators
{oj̄ = h1i1hj12 ⊗ . . . ⊗ h1

iN
h2
jN
}. Two such operators oj̄

and oj̄ commute if we have
∑N

k=1 jki
′
k − j′kik = 0 mod 3.

For certain noncommuting groups of operators, {oj̄}j̄ , we
shall have∑

j̄

|〈oj̄〉|2 ≤ 1, (10)

the equivalent of which was one of the key ingredients of
Ref. [14] for qubits, where the complementarity directly
follows from the anticommutativity relations between the
various Pauli matrix tensor products. Here, the situation
is not as simple. The argument cannot go through di-
rectly as the Heisenberg–Weyl tensor product operators
do not anticommute. Still, we find some forms of com-
plementarity between these operators. For an individual
qutrit we have

1 ≥ Trρ2 =

3∑
i,j=1

|ρij |2 =
1

9

2∑
i,j=0

∣∣∣∣∣
〈

2∑
k=0

ωihj2h
ik
1

〉∣∣∣∣∣
2

=

1

3

2∑
i,j=0

|〈hi1h
j
2〉|2,

1 ≥
∑

(i,j)∈{(1,0),(0,1),
(1,1),(1,2)}

|〈hi1h
j
2〉|2, (11)

where the transition between the third and the fourth line
comes from the Parseval theorem for the inverse Fourier
transform of sums of the Heisenberg–Weyl operators.

Now, we are ready to consider the complementarity for
many-qutrit operators. Here our possibilities are quite
limited. One could expect that as long as tensor prod-
ucts do not commute, the sum of squared moduli of their
averages for any state would not exceed 1. This is false,
however. We have found 792 distinguished sets of seven
mutually non-commuting two-qutrit operators, {oi}7i=1,
and found that for all of them there exist states, for
which

∑7
i=1 |〈oi〉|2 = 5

4 . For the complete set of two-
tensor products of the Heisenberg–Weyl operators, from
the semi-positivity of the state one can show that

8∑
i,j=0

|〈hi ⊗ hj〉|2 ≤ 9. (12)

Nevertheless, we can easily argue for the complementar-
ity of a smaller set. In particular, consider a pair of
operators, o1 and o2, which do not commute with each
other. By diagonalization of one of them and a prop-
erly choosing phases of the new basis states we can bring
them to the 3× 3 block-diagonal form, where each of the
blocks takes form

[o1]block ∝ h1, [o2]block ∝ h2 (13)
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and the complementarity follows directly from Eqs. (11).
In addition, one may have two more operators, the blocks
of which correspond to h3 (h7) and h4 (h8), up to global
phases, extending the complementarity principle from
two general to four specific operators. Notice that the
operation diagonalizing o1 does not need to be local, so
this complementarity is not of a strictly local nature.

We can now recycle the rest of ingredients from
Ref. [14] to this consideration. Obviously, if we have
mutually commuting operators, it suffices to choose a
common eigenstate of all of them, to have all the mean
values equal to 1. Also, we can use the proof from the
reference that in quadratic entanglement criteria, mixing
states cannot improve the situation.

Another fact we need for the construction is that for
product states ρ = ρ

[A]
1 ⊗ ρ

[B]
2 and a multiqutrit operator

in form O = o
[A]
1 ⊗ o[B]

2 , where [A] and [B] are subsys-
tems, we have

|〈O〉|2 = |〈o[A]
1 〉|2|〈o

[B]
2 〉|2, (14)

which, again follows directly from the correspondence
between the two-dimensional vector eigenvalues and the
complex root-of-unity eigenvectors. However, this rela-
tion fails for d > 3, when we replace the complex roots
of unity as eigenvalues with (d−1)-vectors vd,i satisfying
relation

vd,i · vd,j =
dδi,j − 1

d− 1
. (15)

Thus our method is applicable only for a collection of
qutrits.

4. Examples

Consider the four-qutrit GHZ state, which in the com-
putational basis (h1|i〉 = ωi|i〉) has a form

|GHZ3,4〉 =
1√
3

2∑
i=0

|iiii〉. (16)

Perfect correlations of this state include (hereafter, we
omit the tensor product signs):
〈h2h2h2h2〉 = 〈Π (h1h5h1h5)〉 = 1, (17)

where Π (abcd) denotes an arbitrary permutation of
a, b, c, d in terms of the tensor product. Hence we can
use the criterion

|〈h1h5h1h5〉|2 + |〈h2h2h2h2〉|2 ≤

{
1 for all sep. states,
2 for |GHZ3,4〉,

(18)
to exclude separability with respect to bipartitions
AB|CD and AD|BC, while the criterion

|〈h1h1h5h5〉|2 + |〈h2h2h2h2〉|2 ≤

{
1 for all sep. states,
2 for |GHZ3,4〉,

(19)
can be used to exclude separability between subsystems
AC and BD. Additionally, both of these criteria are sen-
sitive to all one-versus-three cuts. Thus, a simultaneous

Fig. 1. Layouts of all four qutrit graph states. Qutrits
are represented by vertices, while edges symbolize the
application of the generalized control-Z operation of
Eq. (23).

violation of both of these inequalities certifies true mul-
tipartite entanglement of the tested state (in principle,
different from the GHZ state).

The next example is the four-qutrit cluster state,

|C3,4〉 =
1

3

2∑
i,j=0

ωij |ijij〉, (20)

for which we can utilize correlations
〈h0h2h5h2〉 = 〈h2h0h2h5〉 =

〈h5h2h0h2〉 = 〈h2h5h2h0〉 = 1. (21)
This leads us to

1

2

(
|〈h0h2h5h2〉|2 + |〈h2h0h2h5〉|2

)
+

1

2

(
|〈h5h2h0h2〉|2 + |〈h2h5h2h0〉|2

)
> 1 (22)

as a criterion which cannot hold for separable states
and therefore indicate true multipartite entanglement.
Again, these four correlations can be, in principle estab-
lished together, and while measuring in local mutually
unbiased bases (MUBs), it again takes only two series of
measurements to establish all four of them.

To demonstrate the usefulness and convenience of our
method, let us consider four-qutrit graph states in gen-
eral. Imagine a collection of four qutrits, each initialized
in state 1√

3
(|0〉+ |1〉+ |2〉). Now we take a graph, which

connects four vertices. There are two such graphs with
three edges (a path and a three-arm star), two with four
(a loop and a triangle with a leg), one with five (a loop
with one diagonal) and the complete graph has six edges.
The graphs are presented in Fig. 1. If two qutrits are
connected by an edge on the graph, we entangle them by
applying a generalization of the control-Z operation,

Ch1 = diag(1, 1, 1, 1, ω, ω2, 1, ω2, ω). (23)
Each four-qutrit graph state has in total 80 perfect corre-
lations for nontrivial tensor products of the h operators.
From lists of these correlations we choose triples of op-
erators, which satisfy the following conditions: (i) their
mean value for the reference state has the absolute value
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equal to 1, (ii) for every bipartite cut, at least one pair
does not cut-commute, (iii) they can be established in
two measurements series. We came to the conclusion
that the true four-partite entanglement is certified if
for graph 1:
|〈h3h8h4h7〉|2 + |〈h6h0h2h5〉|2 > 1

∧|〈h3h8h4h7〉|2 + |〈h0h5h2h5〉|2 > 1,

for graph 2:
|〈h2h5h5h5〉|2 + |〈h1h6h6h4〉|2 > 1

∧|〈h2h5h5h5〉|2 + |〈h5h6h6h0〉|2 > 1,

for graph 3:
|〈h3h3h3h3〉|2 + |〈h1h2h1h2〉|2 > 1

∧|〈h3h3h3h3〉|2 + |〈h1h0h1h6〉|2 > 1,

for graph 4:
|〈h2h5h5h5〉|2 + |〈h4h3h3h7〉|2 > 1

∧|〈h2h5h5h5〉|2 + |〈h8h3h0h3〉|2 > 1,

for graph 5:
|〈h4h2h6h2〉|2 + |〈h0h3h7h1〉|2 > 1

∧|〈h4h2h6h2〉|2 + |〈h3h7h0h5〉|2 > 1,

for graph 6:
|〈h2h8h8h8〉|2 + |〈h0h3h3h3〉|2 > 1

∧|〈h2h8h8h8〉|2 + |〈h3h3h3h0〉|2 > 1. (24)
Notice that not all of these correlations are equal to 1,
but since the criteria are quadratic, this is of no concern
to us.

5. Conclusions

We have shown how graph-based entanglement criteria
can be constructed for collection of qutrits. While the ob-
tained criteria can be applied to a restricted set of states,
i.e., those with very strong correlations, they are easy to
derive, as compared to most other methods. One does
not need to optimize over the whole set of product states,
but simply find some pairs of correlations, that we expect
to be simultaneously high. This was well demonstrated
in case of four-qutrit graph states.

There are some differences between the derivation pre-
sented in Ref. [14] and the above. Therein, we enjoyed
the complementarity relation for an arbitrarily large set
of cut-anticommuting operators. For qutrits, we have
found counterexamples. The complementarity principle
holds in general for pairs of (cut-)noncommuting observ-
ables, and for more only in special cases. One still can,
however, construct criteria such as those in Ref. [15], in-
volving only two terms each. For a given term, we take
as many pairs as necessary to exclude separability of the
state along all cuts.
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