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We propose a general evaluation method to calculate the second virial coefficient with Kihara potential (spher-

ical core). The suggested approach is based on exponential function series expansion formula and gamma functions,
which enable us to have accurate evaluation of the second virial coefficient. The results of second virial coefficient
determined from Kihara potential are compared with the calculations of second virial coefficient with Lennard–
Jones (12-6) potential. The analytical formula allows an accurate determination of Boyle temperature of gases.
The accuracy of the obtained formula is tested by its application to gases Ar, Kr, Ne, CH4, C6H6, C3H8, n-C4H10,
and n-C5H12. The results of the second virial coefficient in a wide temperature range and Boyle temperature are
in good agreement with the data available in the literature.
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1. Introduction

The evaluation of the virial coefficients is an im-
portant issue to determine intermolecular interactions
with arbitrary values of temperature and thermody-
namic properties of real gases [1–8]. In literature, sev-
eral experimental and theoretical methods have been
proposed to obtain accurate and efficient evaluation of
the second virial coefficient with various types of poten-
tials [9–16]. The Lennard–Jones (2n-n) potential that is
important to define the interaction between simple spher-
ical molecules only, has been widely studied by both ex-
perimental and theoretical methods [17]. Kihara poten-
tial is defined of the interaction between two more com-
plex molecules and found wide applications because it is
superior to Lennard–Jones (12-6) potential for determi-
nation of virial coefficients, thermodynamic and trans-
port properties [18–20]. There are also some restricted
studies on the analytical evaluation of second virial co-
efficient with Kihara potential [20–22]. In spite of many
studies, the applications of the second virial coefficient
for various types of the intermolecular interaction are still
one of the main actual problems in physics and biophys-
ical chemistry [23–25].

In this paper, an efficient analytical formula for the sec-
ond virial coefficient with Kihara potential is presented.
For some of gases, examples of applications are given
to demonstrate the efficiency of the present analytical
expression. For gases Ar, Kr, Ne, CH4, C6H6, C3H8,
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n-C4H10, and n-C5H12, we have calculated the Boyle
temperature by using obtained formula. The calculation
results for the second virial coefficient with Kihara poten-
tial and its implementation to the various gases indicate
a good rate of convergence and numerical stability.

2. Expressions for the Second Virial Coefficient
with Kihara Potential and Boyle Temperature

The second virial coefficient in terms of intermolecular
potential u(rij) are given in the following forms [21]

B2(T ) = −2πNA

∞∫
0

r212

(
e−u(r12)/kBT − 1

)
dr12 (1)

where NA is Avogadro’s constant, kB is the Boltzmann
constant and T is temperature. The physical significance
of second virial coefficient is that it demonstrates the first
deviation from ideality [21, 26, 27]. The temperature at
which B2(T ) = 0 is called the Boyle temperature [27].
At Boyle temperature, the gases appear to behave ideally.

For evaluation of the second virial coefficient, we use
the Kihara potential for molecules with spherical cores of
the following form [22]:

u(r) =

 ∞ r < d

4ε

[(
σ−d
r−d

)12
−
(
σ−d
r−d

)6]
r ≥ d

(2)

where d is the radius of spherical molecular core, ε is
the depth of the potential well, σ is the collision diam-
eter, and r is the distance between the particles [28].
Equation (2) gives the Lennard–Jones (12-6) potential,
when d = 0 [28].
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Inserting (2) into (1) leads to

B2(T ∗) = −2πNA

(
σ

1 + a∗

)3
−

a∗∫
0

x2dx+

∞∫
a∗

[
exp

(
− 4

T ∗

(
(x− a∗)−12 − (x− a∗)−6

))
− 1

]
x2dx

 , (3)

where T ∗ = kBT/ε, r/σ − d = x, d/σ − d = a∗, and d = a∗σ/(1 + a∗). By applying partial integral to the second
term in (3), we obtain the following formula:

B2 (T ∗) = −2πNA

(
σ

1 + a∗

)3
4

3T ∗

×
∞∫
a∗

exp

(
− 4

T ∗

(
(x− a∗)−12 − (x− a∗)−6

))(
−12 (x− a∗)−13 + 6 (x− a∗)−7

)
x3dx. (4)

To evaluate integrals we use a well-known series formula of exponential functions as [29]

e±x =

N∑
n=0

(±1)
n x

n

n!
. (5)

By subsisting (5) into (4), we have

B2 (T ∗) = 2πNA

(
σ

1 + a∗

)3

×

 8

T ∗
lim

N=→∞

N∑
n=0

(4/T ∗)
n

n!

∞∫
a∗

exp

(
−4 (x− a∗)−12

T ∗

)
(x− a∗)−6n

(
2 (x− a∗)−13 − (x− a∗)−7

)
x3dx

 . (6)

Further, solving integral in (6) allows to obtain

B2 (T ∗) =
8πNA

3T ∗
lim

N=→∞

N∑
n=0

(4T ∗)
n

n!

× (σ − d)
12+6n

d3( 4/T ∗

(σ − d)
−12

)−(n
2 +1)

Γ
(n

2
+ 1
)

+ 3d2

(
4/T ∗

(σ − d)
−12

)−(n
2 + 11

12 )

Γ

(
n

2
+

11

12

)

+3d

(
4/T ∗

(σ − d)
−12

)−(n
2 + 5

6 )

Γ

(
n

2
+

5

6

)
+

(
4/T ∗

(σ − d)
−12

)−(n
2 + 3

4 )

Γ

(
n

2
+

3

4

)
−1

2
(σ − d)

−6

d3( 4/T ∗

(σ − d)
−12

)−(n
2 + 1

2 )

Γ

(
n

2
+

1

2

)
+ 3d2

(
4/T ∗

(σ − d)
−12

)−(n
2 + 5

12 )

Γ

(
n

2
+

5

12

)

+3d

(
4/T ∗

(σ − d)
−12

)−(n
2 + 1

3 )

Γ

(
n

2
+

1

3

)
+

(
4/T ∗

(σ − d)
−12

)−(n
2 + 1

4 )

Γ

(
n

2
+

1

4

) (7)

With the use of function

H(u, k) = lim
N→∞

N∑
t=0

(4/T ∗)
t

(
σ

1 + a∗

)12+6t

u−
6t+k
12 Γ

(
6t+ k

12

)
(8)

simpler form of (7) can be obtained, namely:

B2 (T ∗) =
8πNA

3T ∗
(9)

×

{
d3H

(
4/T ∗

(σ − d)
−12 , 12

)
+ 3d2H

(
4/T ∗

(σ − d)
−12 , 11

)
+ 3dH

(
4/T ∗

(σ − d)
−12 , 10

)
+H

(
4/T ∗

(σ − d)
−12 , 9

)

−1

2
(σ − d)

−6

[
d3H

(
4/T ∗

(σ − d)
−12 , 6

)
+ d2H

(
4/T ∗

(σ − d)
−12 , 5

)
+ 3dH

(
4/T ∗

(σ − d)
−12 , 4

)
+H

(
4/T ∗

(σ − d)
−12 , 3

)]}
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where N is the upper limits of summation. The reduced
second virial coefficient is B∗2(T ∗) = B2 (T ∗) /b0, where
b0 = 2π

3 NAσ
3. The quantity Γ (α) is well known gamma

function defined by [29]

Γ (α) =

∞∫
0

e−ttα−1dt (10)

In this paper, we calculate the Boyle temperature TB by
using the following condition in (9):

B2 (T ∗B) = 0 (11)

4. Numerical results and discussion

In this work, the second virial coefficient with
Kihara potential has been studied with the analytical
evaluations. The Mathematica 7.0 international software
has been used to calculate the analytical expression.
The second virial coefficients with Kihara potential and
Lennard–Jones (12-6) potential have been plotted and
the influence of parameters values on the results have
been analyzed. The results show that the obtained ex-
pression is general and valid for arbitrary values of pa-
rameters. The calculated results are compared with
the corresponding experimental and other theoretical val-
ues [20, 22, 30]. The accuracy of analytical method is sat-
isfactory and can be suggested for evaluation of ther-
modynamic properties of gases by using second virial
coefficient.

A theoretical method based on the gamma func-
tion was used for the evaluation of second virial co-
efficient with Kihara potential in [5, 20, 31]. The dif-
ference between [5, 20, 31] and the results in this pa-
per is caused by the analytical calculation method. To
show the effectiveness of the proposed method we ap-
ply it for molecules Ar, Kr, Ne, CH4, C6H6, C3H8,
n-C4H10, and n-C5H12. In Tables I–III, the accuracy
of the analytical formula is demonstrated by compari-
son of different results from experimental data, theoreti-
cal data [5, 20, 31], and Lennard–Jones (12-6) potential
results [15, 21]. As can be seen from Table II, the ob-
tained results for the second virial coefficient of Kihara
potential by using different parameter values are in bet-
ter agreement with experimental data than [20] and/or
the calculated results of the second virial coefficient with
Lennard–Jones (12-6) potential.

As it is demonstrated in Table IV, the convergence
properties of (9) with those in [20] change wildly. The
most rapid convergence to the numerical results for dif-
ferent values of T ∗ shows (9). The calculations have been
made with the upper limits N = 50 series.

The examples of calculations of (9) for gases Ar,
Kr, Ne, CH4, C6H6, C3H8, n-C4H10, and n-C5H12

are presented in Tables I–III and Figs. 1, 2. It is
understood from the resolution of the graphics that
the results are in good agreement with data available

in literature [27–29]. For a wide range of tempera-
ture the results of (9) show agreement with the lit-
erature [20, 22, 32]. However, for increased values
of a∗ there is less agreement. Examples for a∗ = 0
(Lennard–Jones limit) are given in Table I. The results
of the calculation according to Eq. (9) agrees with those
in [15, 21]. In Figs. 1, 2 we compare our studies with
results from [22, 30] and the agreements are satisfactory.
Also, the results of second virial coefficient for Kihara
potential show a good agreement with calculated results
of second virial coefficients determined from Lennard–
Jones (12-6) potential [32]. The reduced Boyle’s temper-
ature, obtained by us using the second virial coefficient,
is T ∗B = 2.8771 [33]. At this temperature real gas is con-
sidered as an ideal gas.

The parameters of Lennard–Jones (12-6) poten-
tial [15, 34] and Kihara potential [22, 28] are represented
in Table V for gases Ar, Kr, Ne, CH4, C6H6, C3H8,
n-C4H10 and n-C5H12. These gases are used widely in
industry, and in scientific and engineering applications,
thus the analytical expression provides the access to exact
calculation of second virial coefficient with Kihara poten-
tial. The obtained results for the second virial coefficient
by using different parameter values of Kihara potential
are shown in Table II. The presented values are very close
to each other. As can be seen from Table II, the calcu-
lated second virial coefficient as a function of temperature
when compared with experimental values show very good
agreement. In fact, this agreement is even better than for
those using the Lennard–Jones (12-6) potentials.

To sum up, further academic backgrounds and further
discussion of their results are required. The main contri-
bution of this work is the addition of new relationships
of the well-known second virial coefficient of Kihara po-
tential with spherical core. In addition, the accuracy of
computation is analyzed and a theoretical assessment of
virial to real gases has been performed.

Fig. 1. The reduced temperature dependence of re-
duced second virial coefficients various a∗ of potential
parameter.
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TABLE ICalculation results of second virial coefficient B∗
2 (T

∗) with Kihara potential.

a∗
T ∗

0.000 0.000a 0.111 0.144 0.0399 0.283 0.750 0.470 0.661 0.818
0.50 −8.72021 −8.72021 −7.30713 −6.95861 −8.16383 −5.75048 −3.42537 −4.58775 −3.74069 −3.21053

0.80 −3.73423 −3.73423 −3.02712 −2.85337 −3.45533 −2.25334 −1.11018 −1.67955 −1.26417 −1.00547

1.00 −2.53808 −2.53808 −2.00609 −1.8755 −2.32816 −1.42494 −0.568734 −0.994782 −0.683876 −0.490484

5.00 0.243344 0.243344 0.348585 0.374637 0.284714 0.465317 0.642146 0.553278 0.617927 0.6587
10.0 0.460875 0.460875 0.527116 0.543767 0.486729 0.602633 0.722444 0.661289 0.705566 0.734081
20.0 0.525374 0.525374 0.575458 0.588313 0.544729 0.634693 0.734234 0.682496 0.719749 0.744318
40.0 0.518575 0.518575 0.562969 0.574595 0.535563 0.617351 0.713523 0.662774 0.699147 0.723607
60.0 0.498213 0.498213 0.541629 0.553113 0.514745 0.595737 0.693742 0.641672 0.678914 0.70418
80.0 0.47979 0.47979 0.523072 0.534591 0.49622 0.577591 0.677795 0.624337 0.662523 0.688565
100 0.464069 0.464069 0.507445 0.519039 0.480498 0.562496 0.664719 0.610029 0.649061 0.675777
aRef. [15, 21]

TABLE II

Comparison of the results obtained from Equation (9), different parameter values of Kihara potential [5, 22, 28],
Lennard–Jones (12-6) potential and experimental data for Ar, Kr and Ne.

T (K) Eq. (9)
Kihara Potential Lennard–Jones (12-6)

Potential [15, 21]
Experimental
data [22, 30]Ref. [28] Ref. [5] Ref. [20]

Ar
105.50 −165.942 −165.233 −165.782 −165.91 −168.494 −167.8

143.16 −94.6455 −94.0733 −94.3283 −94.6238 −97.7984 −94.4

153.16 −83.2272 −82.7287 −82.9498 −83.2071 −86.1042 −82.9

203.16 −46.4436 −46.2832 −46.3586 −46.4292 −47.684 −46.5

223.16 −37.2241 −37.1725 −37.2333 −37.2111 −37.8735 −37.3

305.00 −13.9107 −14.1748 −14.2097 −13.9013 −12.756 −15.8

601.00 12.9958 12.3132 12.2924 13.0007 16.6258 13.2
700.00 16.3830 15.6482 15.6288 16.3874 20.3131 15.8
800.00 18.8215 18.0508 18.0327 18.8255 22.9519 17.2
900.00 20.6230 19.8272 19.8104 20.6266 24.8869 19.8
1000.0 21.9923 21.179 21.1633 21.9957 26.3449 22.4

Kr
114 −340.417 −340.306 −339.624 −339.963 −321.522 −363

124 −289.28 −289.119 −288.335 −288.832 −277.909 −306

145 −215.389 −215.278 −214.46 −215.073 −212.1 −229

153 −194.951 −194.84 −194.038 −194.658 −193.212 −201

174 −153.647 −153.536 −152.803 −153.401 −154.057 −158

203 −115.117 −115.006 −114.382 −114.915 −116.251 −117

255 −73.3739 −73.263 −72.8115 −73.221 −73.777 −75.6

305 −49.4342 −49.3233 −48.9961 −49.3096 −48.6695 −50.7

403 −22.4927 −22.3817 −22.2168 −22.4005 −19.7628 −21.9

502 −7.41916 −7.30823 −7.24396 −7.34544 −3.31801 −8.09

704 8.70138 8.81231 8.76247 8.75495 14.4076 7.09
Ne

78.9 −13.9365 −13.9395 −12.3588 −12.6

99.2 −6.05633 −6.05877 −4.97303 −6.38

100 −5.82062 −5.82305 −4.75168 −6.0

125 −0.166542 −0.168503 0.563254 −0.157

148 3.14667 3.14499 3.68014 3.56
200 7.50606 7.50475 7.77619 7.6
300 11.1477 11.1467 11.1755 11.3
400 12.6702 12.6694 12.5749 12.8
600 13.819 13.8183 13.5941 13.8
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TABLE III

The comparative values of second virial coefficients with Kihara, Lennard–Jones (12-6) potentials and Eq. (9) for Ar,
Kr, Ne, CH4, C6H6, C3H8, n-C4H10 and n-C5H12

T (K) Eq.(9)
Kihara

Potential [20]

Lennard–Jones
(12-6) Potential
Ref. [15, 21]

Eq.(9)
Kihara

Potential [20]

Lennard–Jones
(12-6) Potential
Ref. [15, 21]

Ar Kr

100 −182.99 −182.99 −184.846 −443.157 −443.157 −404.842

200 −48.1068 −48.1068 −49.4462 −118.413 −118.413 −119.536

300 −14.9128 −14.9128 −13.8442 −51.3902 −51.3902 −50.7417

400 −0.244618 −0.244618 2.14369 −23.0879 −23.0879 −20.4085

500 7.87632 7.87632 11.0303 −7.65556 −7.65556 −3.57715

600 12.9548 12.9548 16.5811 1.96648 1.96648 6.99359

700 16.383 16.383 20.3131 8.48479 8.48479 14.1692

800 18.8215 18.8215 22.9519 13.157 13.157 19.307

900 20.623 20.623 24.8869 16.6456 16.6456 23.1311

1000 21.9923 21.9923 26.3449 19.3321 19.3321 26.0623

Ne CH4

100 −5.82062 −5.82062 −4.75168 −429.901 −429.901 −373.085

200 7.50606 7.50606 7.77619 −105.905 −105.905 −108.62

300 11.1477 11.1477 11.1755 −42.0094 −42.0094 −42.8284

400 12.6702 12.6702 12.5749 −15.4109 −15.4109 −13.604

500 13.4213 13.4213 13.2495 −1.01061 −1.01061 2.64038

600 13.819 13.819 13.5941 7.92903 7.92903 12.8362

700 14.0318 14.0318 13.7675 13.967 13.967 19.7442

800 14.1391 14.1391 13.8443 18.2851 18.2851 24.6767

900 14.1826 14.1826 13.8633 21.5034 21.5034 28.3355

1000 14.1861 14.1861 13.8465 23.978 23.978 31.1289

C6H6 C3H8

100 −201170. −201164. −100697. −8404.14 −8404.14 −2909.57

200 −4993.56 −4993.56 −2703.32 −948.528 −948.528 −798.825

300 −1457.68 −1457.68 −861.105 −387.363 −387.363 −391.465

400 −719.333 −719.333 −464.585 −209.415 −209.415 −222.152

500 −428.552 −428.552 −305.027 −124.185 −124.185 −130.281

600 −277.3 −277.3 −220.715 −74.6287 −74.6287 −73.0332

700 −185.612 −185.612 −168.987 −42.3909 −42.3909 −34.187

800 −124.443 −124.443 −134.147 −19.8292 −19.8292 −6.25773

n− C4H10 n− C5H12

100 −44847.2 −44847.2 −5386.35 −169997. −169991. −6847.16

200 −2095.05 −2095.05 −1348.06 −4084.09 −4084.09 −1689.26

300 −711.03 −711.03 −666.946 −1176.35 −1176.35 −835.682

400 −367.573 −367.573 −394.147 −574.712 −574.712 −495.594

500 −220.857 −220.857 −248.477 −338.882 −338.882 −314.411

600 −140.911 −140.911 −158.424 −216.565 −216.565 −202.537

700 −90.9926 −90.9926 −97.562 −142.562 −142.562 −126.976

800 −57.0096 −57.0096 −53.8787 −93.2605 −93.2605 −72.7603
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TABLE IV

Convergence results of expression (9) and from [20] as a function of summation limits N

N
a∗ = 0.000 and T ∗ = 100 a∗ = 0.818 and T ∗ = 5

Eq. (9) Ref. [20] Eq. (9) Ref. [20]
5 0.4640692939053601 0.4640694857134132 0.6552290400583131 0.6589027966076112
10 0.4640694689727591 0.4640694689728032 0.6586984866024695 0.6587001471269023
15 0.46406946897280144 0.464069468972801 0.6587001004463544 0.6587001006874388
20 0.46406946897280144 0.46406946897280105 0.6587001006829867 0.6587001006830022
25 0.46406946897280144 0.46406946897280105 0.6587001006830024 0.6587001006830019
30 0.46406946897280144 0.464069468972801 0.6587001006830024 0.6587001006830019
35 0.46406946897280144 0.46406946897280105 0.6587001006830024 0.6587001006830018
40 0.46406946897280144 0.46406946897280105 0.6587001006830024 0.6587001006830019
45 0.46406946897280144 0.46406946897280105 0.6587001006830024 0.6587001006830018
50 0.46406946897280144 0.46406946897280105 0.6587001006830024 0.6587001006830019

TABLE V

Parameters of Lennard–Jones (12-6) potencial and Kihara potencial

Gases
Lennard–Jones

(12-6) potential [15, 34]
Kihara potential [27, 28]

σ [Å] ε/kB [K] a∗ d [Å] σ [Å] ε/kB [K]
Ar 3.623 111.84 0.111 0.33570 3.36 142.10
Kr 3.895 154.87 0.144 0.44713 3.533 213.73
Ne 2.75 35.6 0.0399 0.105 2.74 39.6
CH4 4.015 140.42 0.283 0.78569 3.562 227.13
C6H6 3.400 830.00 0.750 2.28686 5.336 832.00
C3H8 5.640 242.00 0.470 1.47427 4.611 501.89
n-C4H10 6.081 287.20 0.661 1.87714 4.717 701.15
n-C5H12 6.476 293.28 0.818 2.26277 5.029 837.82

Fig. 2. The temperature dependence of second virial coefficients for: (a) Ar, (b) Kr, (c) Ne.
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