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Modeling a given quality factor Q with a relaxation spectrum is important to time-domain simulations of

wave propagation in a viscoelastic medium. In this paper, we present an optimal scheme of modeling the quality
factor with a relaxation spectrum based on a generalized linear solid, which is available for both constant and
frequency-dependent Q. A detailed study is conducted on the distribution of stress relaxation times and the
error in the modeling scheme. From the study, we find that the error will be larger if the distribution range is
too small or too wide, especially, the error is always larger if the distribution range equals the frequency range
of interest. Since seeking the distribution range that yields the highest accuracy needs a series of calculation,
for convenience, we suggest distributing the reciprocals of stress relaxation times logarithmically over the range
from half the minimal frequency of interest to twice the maximal frequency of interest, which always yields a high
accuracy. The value of the frequency-independent Q has little effect on the error. Moreover, effect of the number
of SLSs (short for standard linear solid, a spring and a dashpot in parallel in series with a spring) on the accuracy
is studied. We find that employing at least 5 SLSs leads to a higher accuracy. With this scheme, we model
the frequency-dependent Q functions. The modeling result shows the validity of the scheme, and the error is larger
when modeling some Q functions that decrease with frequency.
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1. Introduction

Many media such as rock, soil, and metal are exposed
on waves attenuation, so they should be considered vis-
coelastic. The quality factor Q is often used to deter-
mine the efect of attenuation [1, 2]. Larger quality fac-
tor Q indicates smaller attenuation of the medium. The
quality factor is of fundamental interest in many fields
such as groundwater, oil exploration, and earthquake
seismology.

Some laboratory experiments show that the quality
factor Q is independent of frequency over a broad band-
width [3, 4]. There are also some other reports suggesting
that Q can be frequency-dependent [5–7]. Determina-
tion of the quality factor seems to be relevant since it
is an important parameter in many fields. However, it
is not clear what is the correct form of Q, i.e., whether
it should be assumed frequency independent [8], or fre-
quency dependent [5].

Modeling a given quality factor Q with a relaxation
spectrum is important to time-domain modeling of vis-
coelastic medium [9–11]. It is also critical for the forward
deduction [12] and inversion [13, 14] of surface waves in
viscoelastic medium. Many efforts are made not only for
the case of constant Q, but also for the case of frequency-
dependent Q. Liu et al. [15] studied the relaxation spec-
trum of linear inelastic solid. A relaxation spectrum
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was chosen to give a nearly constant Q. In 1984, Day
and Minster described an efficient scheme for incorporat-
ing general anelastic attenuation laws into time-marching
methods for computing theoretical seismograms. In their
paper [16], the relaxation spectrum for the case of
frequency-independent Q was obtained with the Padé ap-
proximate method. In 1995, Blanch et al. [17] presented
a method for modeling constant Q called τ -method. This
method is based on an explicit formula and appears to be
more accurate than the Padé approximate method, since
it was able to reduce computation time and memory re-
quirements. In 2006, the other method for modeling con-
stant Q was obtained by Helthom et al. They used the
nonlinear optimization Nelder–Mead algorithm [18, 19],
thus presented even more accurate approach than the τ
method [20]. In turn, Sabinin [21] used a pair of average
relaxation times to model a constant Q instead of a set of
more relaxation times. In 2016, Blanc et al. [22] modeled
a constant Q with a nonlinear optimization in which both
strain and stress relaxation times are involved. Their
method may yields more accuracy for same number of
relaxation times, but the optimization approach is more
difficult. In 2018, Xie et al. studied the error of constant
Q modeling and seismic wave simulation [23].

Modeling frequency-dependent Q is a bit more compli-
cated. In 2004, Asvadurov et al. [24] presented a numer-
ical scheme to model a frequency-dependent Q by mod-
ifying the scheme for the case of constant Q proposed
by Emmerich and Korn [25]. In their paper one can use
an approximated formula to model a constant Q. Liu and
Archuleta derived an empirical formula to interpolate the
weight coefficients for modeling a frequency-dependent Q
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and for modeling the frequency-dependent Q with simu-
lated annealing algorithm [26]. Both attempts, however,
are based on a generalized Maxwell solid, while there are
no studies on modeling frequency-dependent Q based on
a generalized linear solid. Moreover, relevant aspects,
like how to choose the initial value when modeling of con-
stant or frequency-dependent Q, have not been studying
in detail at all.

In this paper, we present an optimal scheme of mod-
eling both constant and frequency-dependent Q for gen-
eralized linear solid. We also give a detailed study on
the distribution of stress relaxation times and the error
in the modeling scheme.

2. Generalized linear solid model

We refer to the system consisting of a spring and
a dashpot in series, in parallel with a spring, and call
it SLS. As shown in Fig. 1, the generalized linear solid
model consists of an array of SLSs. It is widely used in
the simulation of wave propagation in viscoelastic me-
dia [9, 10, 27, 28].

For the l-th (l = 1, .., L) SLS the complex stress mod-
ulus can be written as

Ml(ω) =MRl

(
1 + iωτεl
1 + iωτσl

)
. (1)

The corresponding relaxed stress modulus, the stress re-
laxation times and the strain relaxation times are

MRl =
k1lk2l
k1l + k2l

, τσl =
ηl

k1l + k2l
, τεl =

ηl
k2l

. (2)

Since
σl =Mlε, (3)

the stress and strain of the medium yield

σ =

L∑
l=1

Mlε =

L∑
l=1

MRl

(
1 + iωτεl
1 + iωτσl

)
ε. (4)

Now, assuming that

MRl =
MR

L
, (l = 1, . . . , L) , (5)

the complex stress modulus of the medium yields

M(ω) =
MR

L

L∑
l=1

(
1 + iωτεl
1 + iωτσl

)
. (6)

The quality factor Q [29] is usually defined as

Q(ω) =
Re (M (ω))

Im (M (ω))
. (7)

Therefore, its relation with frequency at given relaxation
time spectrum becomes

Q(ω) =
( L∑
l=1

1 + ω2τεlτσl
1 + ω2τ2σl

)/( L∑
l=1

ω(τεl − τσl)
1 + ω2τ2σl

)
. (8)

Using (8), we can obtain the relaxation time spectrum
for a given Q function of a medium Q(ω) with optimiza-
tion methods. The objective function can be written as

Φ = |Qn(ω)−Q(ω)|2 , (9)
where the function Qn(ω) is the estimated Q function,
and ||2 is the l2-norm.

Fig. 1. The model of generalized linear solid.

A detailed study on modeling the relaxation time
spectrum with optimization method will be given in
this paper.

3. Modeling of constant Q

Minimizing (9) is a typical least squares problem.
It can be solved with the Levenberg–Marquardt (L–M)
method [30, 31]. Until now more studies are focused on
modeling constant Q. It is a bit simpler as compare to
modeling frequency-dependent Q, therefore, in this sec-
tion we start from the problem of modeling constant Q.

We will proceed similarly to the schemes presented by
other researchers [17, 20]. At first we distribute the recip-
rocals of the stress relaxation times τσl logarithmically,
and then we seek for the strain relaxation times τεl by
minimizing (9). For example, to approximate model with
Q = 20, we employ 5 SLSs, i.e., L = 5. The frequency
range of interest varies from 2 Hz to 25 Hz. The result ob-
tained by Blanch et al. using τ -method is shown in Fig. 2
and Table I (case 1) [17]. The maximal relative error and
the average relative error is 3% and 0.92%, respectively.

The stress relaxation times τσl are chosen to be the
same as those in the paper of Blanch et al. (case 1 in
Table I) [17]. The initial value τεl of the optimal problem
is given by the τ method. The correspondingQ-curve, de-
termined by minimizing (9) with L–M method, is shown
in Fig. 2. The relaxation times are given in Table I
(case 2). The maximal relative error and the average
relative error is 1.1% and 0.27%, respectively. One can
conclude, therefore, that the scheme using L–M method
allows to get higher accuracy than τ -method.

Many researchers believe that distributing the recip-
rocals of the stress relaxation times τσl logarithmically
can lead to a good approximation [15, 17], how to choose
the distribution range is still an open question. In for-
mer studies, the distribution range of frequency was
as the frequency range of interest. In the paper of
Blanch et al. [17], though stress relaxation times were
presented, how to select them was not described clearly.
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TABLE 1

Approximation results assuming L = 5, fmin = 2 [Hz]
and fmax = 25 [Hz].

Case Q
Max. rel.
error [%]

Avg. rel.
error [%]

a l τσl [ms] τεl [ms]

1 20 3.0 0.92

1 265.26 281.2202
2 52.203 55.3440
3 10.273 10.8911
4 2.0218 2.1434
5 0.39789 0.4218

2 20 1.1 0.27

1 265.26 349.8503
2 52.203 66.9323
3 10.273 13.7355
4 2.0218 2.4971
5 0.39789 0.4101

3 20 3.84 1.00 2

1 79.5775 104.7173
2 42.3217 46.6328
3 22.5079 23.7420
4 11.9704 11.9704
5 6.3662 9.1874

4 20 0.18 0.05 2

1 159.1549 208.6572
2 59.8519 67.5090
3 22.5079 26.8829
4 8.4643 9.5733
5 3.1831 4.3648

5 20 0.14 0.06 2

1 159.1549 188.4429
2 59.8519 51.2968
3 22.5079 28.5605
4 8.4643 9.9513
5 3.1831 3.7913

6 100 0.16 0.05 2

1 159.1549 168.9303
2 59.8519 61.2911
3 22.5079 23.3110
4 8.4643 8.6693
5 3.1831 3.3854

7 100 3.81 0.92 1

1 79.5775 84.9235
2 42.3217 42.8154
3 22.5079 22.8435
4 11.9704 11.9704
5 6.3662 6.8625

8 100 0.71 0.39 10

1 795.7747 795.7764
2 133.8328 144.0595
3 22.5079 23.6800
4 3.7854 4.0828
5 0.6366 0.6366

9 Eq.(10) 0.16 0.049 2

1 159.1549 243.6722
2 59.8519 72.9740
3 22.5079 29.6652
4 8.4643 10.2983
5 3.1831 4.9124

10 Eq.(11) 11.31 2.35 2

1 159.1549 164.4224
2 59.8519 68.3224
3 22.5079 22.7804
4 8.4643 8.4643
5 3.1831 4.2698

Fig. 2. Optimal approximation for Q = 20.

That is why for the Q = 20 model, we distribute the re-
ciprocals of τσl logarithmically over the frequency range
of interest, and determine the initial value of τεl with
τ -method. Next we minimize (9) with L–M method.
The approximated Q is shown in Fig. 2, and the values of
relaxation times are given in Table I (case 3). The maxi-
mal relative error and the average relative error is 3.84%
and 1.00%, respectively. Note that the accuracy is lower
than case 2 in which values of τσl were the same as in [17].
Because there is a constraint in the optimization that τεl
should be larger than τσl, the accuracy is even lower than
that of τ -method in case 1.

When comparing case 3 with case 2, one can see
that the distribution range of τσl has a great influence
on the accuracy. We enlarge the distribution range to
[ 12fmin, 2fmax], where fmin and fmax are the minimal and
maximal frequency, in the frequency range of interest, re-
spectively. The approximated result is shown in Fig. 2,
and the values of relaxation times are given in Table I
(case 4). The maximal relative error and the average rel-
ative error is 0.18% and 0.05%, respectively. Regarding
the former cases, the accuracy in case 4 is significantly
improved by distributing the reciprocals of τσl logarith-
mically over [ 12fmin, 2fmax].

Helthom et al. presented also a method for modeling
constant Q [20]. In that paper, initial values of relax-
ation times are given by τ method, but at the same time
both τσl and τεl are sought with one optimization al-
gorithm, namely Matlab routine fminsearch. Here, we
test the effect of the scheme. Again, let Q = 20, and
the reciprocals of τσl is distributed logarithmically over
[ 12fmin, 2fmax], and the initial τεl is given by τ method.
Then seek τσl and τεl simultaneously with Matlab routine
fminsearch. The resulted Q function is shown in Fig. 2,
and the values of relaxation times are shown in Table I
(case 5). The maximal relative error and the average rel-
ative error are 0.14% and 0.06%, respectively. Similar to
case 4, the accuracy is still the same, with the result of
seeking the strain relaxation times alone. Furthermore,
although τσl and τεl are sought simultaneously, the result
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Fig. 3. Optimal approximation for Q = 100.

always depends on the initial value. If the distribution
range of τσl is changed, like case 2 or 3 for example, the
errors will be larger. This may be caused by the nonlin-
earity when seeking τσl and τεl simultaneously. There-
fore, seeking τσl and τεl simultaneously is not better than
the scheme of our paper.

The efficiency of our scheme can be tested for the larger
values of Q. If the Q = 100 over the frequency range of
2 Hz to 25 Hz, the approximated result when the recipro-
cals of τσl

are distributed logarithmically over the range
of [12fmin, 2fmax] is shown in Fig. 3, and the values of
relaxation times are given in Table I (case 6). The maxi-
mal relative error is 0.16%, and the average relative error
is 0.05%. Similar to case 4, the accuracy is still very high.
As shown in Fig. 3 and Table I (case 7), if the distribution
range is [fmin, fmax], the maximal relative error is 3.81%,
and the average relative error is 0.92%. So also in the case
of Q = 100, the accuracy can be significantly improved
by enlarging the distribution range to [ 12fmin, 2fmax].

Further enlarging the distribution range will not lead
to higher accuracy. If we enlarge the distribution range to
[ 1
10fmin, 10fmax], the result Q function is shown in Fig. 3,
and the values of relaxation times are shown in Table I
(case 8). The maximal relative error is 0.71%, and the
average relative error is 0.39%. Although the accuracy is
still higher than the result with the distribution range of
[fmin, fmax], it is lower than the result when the distribu-
tion range is [ 12fmin, 2fmax].

Let us consider the general distribution range
[ 1afmin, afmax]. Figure 4 shows the variation of average
relative errors with the value a for setting Q = 20,
Q = 100 and Q = 500. We can observe that the av-
erage relative errors are lowest when 2 < a < 3, while
the absolute value of Q has little effect on it. That is
why in the latter part of this section we can just study
the Q = 20 model. When a < 1.5, the average error in-
creases rapidly. Figure 4 also shows the variation of aver-
age relative errors with the value a, when the frequency
range of interest is from 2 Hz to 250 Hz and Q = 20.

Fig. 4. The variation of average relative errors with the
value a, L = 5.

Fig. 5. The variation of average errors with the value
L when Q = 20 and a = 2.

When the frequency range of interest is larger, the av-
erage relative error is larger. In this case, the average
relative errors are lowest when the value of a is between
1.5 and 2, when a is smaller or larger, the average relative
error increases rapidly. Furthermore, Fig. 4 shows that
there is always a “best” value of a that leads to a smallest
average relative error, and the accuracies are high when
a is 2 for these cases.

In the above cases, L is chosen to be 5, but obviously
the value of L can affect the accuracy. Figures 5 shows
the variation of average relative errors with the value
of L when Q = 20 and fmax is 25 Hz, 250 Hz, and
2500 Hz, respectively. One can observe in Fig. 5 that
there is a great difference between accuracies for L = 5
and L = 4. Therefore, setting L > 4, i.e., employ at least
5 SLSs, seems to be reasonable suggestion. One may
think that larger L always leads to higher accuracy, how-
ever, it is opposite. When L > 7, the accuracy gets a
little bit lower. This is because minimization of (9) re-
quires a constraint that τεl should be larger than τσl.
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Fig. 6. Average relative error under different a and fmax, when (a) L = 5, (b) L = 6, (c) L = 7, (d) L = 8, (e) L = 9,
(f) L = 10.

Figure 6 shows the average relative error for differ-
ent values of a and fmax, when L values varies in the
range 5–10, and Q = 20. The colder color represents
smaller average relative error, so indicating these values
of a leads to high accuracy under different conditions.
The “best” value of a is different for different sets of
fmax and L values. Therefore, series of calculations are
required if one needs the highest accuracy. One can con-
clude that a = 2 always leads to a high accuracy. All
above figures confirm that a good and convenient choice
is a = 2.

4. Modeling of frequency-dependent Q

There are studies suggesting that Q can be frequency-
dependent [5–7]. Several of them are based on a gener-
alized Maxwell solid. In this section, we study the mod-
eling of frequency-dependent Q based on a generalized
linear solid.

Two behaviour of frequency-dependent factor Q can be
distinquished typically: whenQ increases with frequency,
and when Q decreases with frequency. We assumed that
these dependences are described by functions

Q = 10 + 2 (0.2ω)
0.2
, (9)

and
Q = 50− 2 (0.02ω)

2 (10)
in the range from 2 Hz to 25 Hz. Rix and Meng obtained
the damping ratio of polymethyl methacrylate (PMMA)
and remolded kaolin experimentally, and the results are

Fig. 7. Optimal approximation of the Q function given
by (10) for L = 5. Average error is 0.049%, while maxi-
mal error equals 0.16%.

similar with these two functions [6]. For L = 5 and a = 2,
the modeling result corresponding to (9) is shown in
Fig. 7. The values of relaxation times are given in Table I
(see case 9). The maximal relative error and the aver-
age relative error is is 0.16% and 0.049%, respectively.
Although the value of Q varies with frequency, the mod-
eling accuracy is still extremely high. This indicates that
the scheme we used for frequency-dependent Q is very ef-
ficient. Further, the accuracy depends on the value of a.
In fact, the “best” value of a is about 2.4, however, a = 2
is still a good choice, as shown in Fig. 8.
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Fig. 8. The variation of average relative errors with the
value a when the Q function is given by (10) for L = 5.

Fig. 9. Optimal approximation of the Q function given
by (11) for L = 5. Average error is 2.3%, while maximal
error equals 11%.

The result corresponds to (11) for L = 5 is shown in
Fig. 9. The maximal relative error and the average rel-
ative error are 11.31% and 2.35%, respectively. The val-
ues of relaxation times are given in Table I (case 10).
Note that the errors of case 9 are much larger. Our
studies clearly show that the errors can be much larger
when the Q-functions decrease with frequency similar
to (11). Analogous observation were made by Liu and
Archuleta [26], whose Q-function was modeled based on
generalized Maxwell solid [26].

5. Conclusions

In this paper, we presented an optimal scheme of mod-
eling the quality factor Q with a relaxation spectrum
based on generalized linear solid. Our approach becomes
valid for both constant and frequency-dependent Q. We
found that seeking both strain and stress relaxation times
with one optimization algorithm at the same time are not
more accurate than seeking strain relaxation times alone.

The accuracy appears to be always high when distribut-
ing the reciprocal of the stress relaxation times logarith-
mically over the range from half of the minimal frequency
of interest to twice of the maximal frequency of inter-
est. While the error will increase only if the distribution
range is too narrow or too wide. Since seeking the dis-
tribution range that yields the highest accuracy needs
a series of calculation, our suggestion is to distribute
the reciprocals of stress relaxation times logarithmically
from half of the minimal frequency of interest to twice
of the maximal frequency of interest. The error appears
to be much larger when the distribution range equals the
frequency range of interest. The absolute value of the
frequency-independent Q has subtle effect on the error.
Larger error is expected when the Q function decreases
with frequency. The study in this paper can be mean-
ingful for time-domain simulation based on generalized
linear solid.
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