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Memory functions of the relaxation process of the density fluctuations of the lithium melt near the melting

point on the basis of molecular dynamics data are calculated. It is established that the memory functions of the
first four orders for the range of wave numbers corresponding to microscopic spatial scales are characterized by
oscillating behavior. The frequency characteristics of the dynamic structure factor for a wide range of wave numbers
are calculated. The convergence of the relaxation parameters ∆4(k) and ∆5(k) for the range of wave numbers from
the hydrodynamic regime (k → 0) to the values of k higher than the boundary of the first pseudo-Brillouin zone
(for k ≈ 0.87km) are detected. The characteristic time scales of the process of structural relaxation of the density
fluctuations are determined.
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1. Introduction

The memory function formalism introduced by
Zwanzig and Mori [1, 2] is an invaluable tool to descrip-
tion of dynamic correlations in liquids from a theoret-
ical point of view [3, 4]. Dynamic correlations are de-
scribed by the corresponding time correlation functions
(TCF), which can be obtained from spectroscopic exper-
iments (experiments on scattering of light and neutrons,
inelastic X-ray scattering, etc.), and molecular dynam-
ics simulations [5–7]. In the memory function formal-
ism of Zwanzig–Mori, the time evolution of the TCF
is associated with the so-called memory functions with
the help of an infinite chain of integro-differential equa-
tions of the non-Markovian type. In describing various
relaxation processes, it is essential to know the behav-
ior of the memory function. A rich variety of model
functions were proposed for this purpose, most of which
have little physical justification. For example, Gaus-
sian [8, 9] and exponential functions [10–12], delta func-
tion (the transition to the Markovian limit) [13], and hy-
perbolic secant [14–16], as well as their linear combina-
tions [17, 18] were used to calculate velocity, transverse
stress, energy current density correlation functions, and
the corresponding transport coefficients for various types
of liquids. Such memory functions often do not have any
physical justification and the parameters entering into
these expressions are found from the condition of the best
agreement with the experiment. Determination of the
behavior of the memory function is usually performed
on the basis of the initial time correlation function by
numerical solution of the integro-differential equation or
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the corresponding equation in the frequency mapping.
Although the method is formally correct, the computed
memory functions contain significant errors due to the
numerical integration procedure and the instability of
the numerical algorithm [19, 20]. Various approaches
were proposed [21–23] to solve these problems. How-
ever, all methods are limited by the accuracy associated
with the accuracy of the initial time correlation function,
and the functions defined are limited only by the mem-
ory functions of lower orders. In the presented work,
the considered approach is devoid of all these drawbacks.
The lithium melt near the melting point was taken as
the system under study, for which, as was shown ear-
lier in [24], an adequate description of the structural
and dynamic features is possible within the framework of
molecular dynamics simulations with the pair interaction
potential [25].

2. Dynamic correlation functions and sum rules

Let us consider a system consisting of N -atoms with
mass m, in a volume V and with a particle den-
sity ρ = N/V . The initial dynamic variable that allows
to characterize the microscopic collective dynamics of the
system is the local density fluctuation δρ(k, t) [26]:

A0(k, t) = δρ(k, t) =
1√
N

N∑
l

e− ik·rl(t), (1)

where rl(t) is the radius vector of the l-th particle at
time t, and k is the wave vector. Using the Gram–
Schmidt orthogonalization procedure [27]:
〈An(k)∗, Am(k)〉 = δn,m〈|An(k)|2〉, (2)

one can get a set of orthogonal dynamic variables
A(k) = {A0(k), A1(k), A2(k), . . .} . (3)

The angle brackets denote the averaging over the canon-
ical Gibbs ensemble and δn,m is the Kronecker symbol.
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To determine the time correlation function (TCF) of
the density fluctuations we follow [28] and use

F (k, t) =
〈A∗0(k, 0)A0(k, t)〉
〈|A0(k, 0)|2〉

, (4)

which is related to the dynamic structure factor (experi-
mentally measured value). This relation is

S(k, ω) =
S(k)

2π
Re

 ∞∫
−∞

F (k, t)e iωtdt

 , (5)

and S(k) is the static structure factor, or a zeroth fre-
quency moment of the S(k, ω).

According to formalism of [29], the time evolution of
the TCF of the density fluctuations can be represented
with help of integro-differential equations of the form

dMn(k, t)

dt
= −∆n+1(k)

∞∫
0

Mn(k, τ)Mn+1(k, t− τ)dτ,

(6)
where

Mn(k, t) =
〈A∗n(k, 0)An(k, t)〉
〈|An(k, 0)|2〉

(7)

is the so-called n-th order memory function, in partic-
ular, M0(k, t) = F (k, t). The quantities ∆n(k) are the
relaxation parameters. They have the dimension of the
square of the frequency

ω(2j)(k) =

∫
ω2jS(k, ω)dω∫
S(k, ω)dω

, j = 1, 2, . . . (8)

and are related to the even frequency moments of the dy-
namic structure factor S(k, ω) [30] in the following way:

∆1(k) = ω(2)(k), ∆2(k) =
ω(4)(k)

ω(2)(k)
− ω(2)(k), ∆3(k) =

ω(6)(k)ω(2)(k)−
(
ω(4)(k)

)2
ω(4)(k)ω(2)(k)−

(
ω(2)(k)

)3 ,
∆4(k) =

1

∆1(k)∆2(k)∆3(k)

{
ω(8)(k)−∆1(k)

[
(∆1(k) + ∆2(k))

3
+ ∆2(k) (∆3(k))

2
+ 2∆2(k)∆3(k) (∆1(k) + ∆2(k))

]}
,

∆5(k) =
1

∆1(k)∆2(k)∆3(k)∆4(k)

{
ω(10)(k)− 2ω(8)(k) [∆1(k) + ∆2(k) + ∆3(k) + ∆4(k)]

+ω(6)(k)
[
(∆1(k))

2
+ (∆2(k))

2
+ (∆3(k))

2
+ 2∆2(k) (∆1(k) + ∆3(k)) + 4∆1(k)∆3(k)

]
−ω(4)(k)

[
2∆2

1(k) (∆3(k) + ∆4(k)) + 2∆1(k) (∆2(k) + ∆3(k)) (∆3(k) + 2∆4(k)) + 2∆2(k)∆4(k) (∆2(k) + ∆3(k))
]}

+∆4(k) + 2∆1(k) + 2∆1(k)
∆1(k)

∆2(k)
+

(∆1(k))2∆3(k)

∆2(k)∆4(k)
. (9)

Note that for the classical system only the even fre-
quency moments are non-zero. Therefore, the second, the
fourth, and the sixth frequency moments of the dynamic

structure factor S(k, ω) in the case of a spherical pair
potential U(r) can be found using the microscopic
expressions [31, 32]:

ω(2)(k) =
kBT

m

k2

S(k)
, ω(4)(k) =

3

S(k)

(
kBT

m
k2
)2

+
ρkBT

m2S(k)
k2
∫

drg(r) [1− cos (k · r)]∇2
l U(r),

ω(6)(k) =
15

S(k)

(
kBT

m
k2
)3

+
15ρ

mS(k)

(
kBT

m
k2
)2 ∫

drg(r)∇2
l U(r) +

6ρk2BT
2

m3S(k)
k3
∫

drg(r)∇3
l U(r) sin(k · r)

+
2ρ2kBT

m3S(k)
k2
∫

drg(r)
(
∇∇lU(r)

)2
[1− cos(k · r)]

+
ρ2kBT

m3S(k)
k2
∫ ∫

drdr′g3(r, r′)
(
∇∇lU(r)

)(
∇′∇′lU(r′)

)
[1− cos(k · r)− cos(k · r′) + cos(k · (r − r′))] . (10)
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Here, the subscript l denotes the longitudinal com-
ponent parallel to the vector k, g(r) is the radial dis-
tribution function of two particles, g3(r, r′) is a three-
particle radial distribution function, kB is the Boltzmann
constant, and m is the particle mass. The expressions
for higher-order frequency moments have a rather com-
plex form and contain many-particle radial distribution
functions, the finding of which presents a separate and
complex problem [33]. Consequently, the correct defini-
tion of the frequency moments above the fourth order
based on microscopic expressions is not always possible.
In turn, the values of the frequency moments ω(2m)(k)
(m = 1, 2, 3, . . .) obtained on the basis of the integra-
tion of the spectral density S(k, ω) with the help of (8),
are characterized by significant errors, which almost al-
ways lead to unphysical results.

Relaxation parameters can also be determined numer-
ically based on molecular dynamics simulation data in
accordance with their basic definitions [30]:

∆n(k) =
〈|An(k, 0)|2〉
〈|An−1(k, 0)|2〉

, n = 1, 2 . . . (11)

The dynamic variables are determined by the relations

A1(k, t) =
∂A0(k, t)

∂t
= − i√

N

N∑
l

(k · vl(t)) e− ik·rl(t),

A2(k, t) =
∂A1(k, t)

∂t
+ ∆1A0(k, t) =

1√
N

N∑
l

{
∆1 − (k · vl(t))

2 − i (k · al(t))
}

e− ik·rl(t),

· · ·

An(k, t) =
∂An−1(k, t)

∂t
+ ∆n−1An−2(k, t). (12)

Thus, it is possible to perform a fairly correct estimate
for the memory functions and the frequency characteris-
tics of the dynamic structure factor S(k, ω), on the basis
of molecular dynamics simulation data.

3. Simulation details

Molecular dynamics simulation of the lithium melt
in the NVT-ensemble at the temperature T = 475 K
with the number density ρ = 0.0445 −3 was performed.
The system consisted of N = 4394 atoms enclosed in
a cubic cell with periodic boundary conditions. In-
teraction between atoms was realized with the help of
a pair potential [25]. The equations of motion were in-
tegrated using the velocity Verlet algorithm with time
step τ = 0.01 ps [35]. To bring the system to thermo-
dynamic equilibrium and to calculate the spectral char-
acteristics, 100000 and 2000000 time steps were made,
respectively.

In Fig. 1, we have compared g(r) and S(k) for liq-
uid lithium at temperature T = 475 K with the experi-
mental X-ray diffraction data [34]. These functions g(r)

Fig. 1. (a) Radial atomic distribution function for liq-
uid lithium at temperature T = 475 K. The solid lines
are the results of simulation of the atomic dynamics with
the effective pseudopotential [25]. (◦ ◦ ◦) — experimen-
tal data on X-ray diffraction [34]. (b) Static structure
factor of the lithium melt.

and S(k) are calculated using the effective pseudopoten-
tial [25]. The simulation results are seen to reliably char-
acterize the fine structure of the system under study and
to exactly reproduce the experimental data.

4. Simulation results and numerical calculations

The dynamic structure factor S(k, ω) of the system
under study is connected with the intensity of inelastic
X-ray scattering I(k, ω) by the relation [36]:

I(k, ω) = E(k)

∫
~ω′/kBT

1− e−~ω′/kBT

×R(k, ω − ω′)S(k, ω′)dω′, (13)
where E(k) denotes the normalized form factor,
R(k, ω) is the experimental resolution function.

In Fig. 2, the molecular dynamics results of I(k, ω) are
compared with the experimental IXS data [37]. As can
be seen, the numerical results for the dynamic structure
factor has excellent agreement with experimental data.

Fig. 2. The intensity of inelastic X-ray scattering
I(k, ω) in liquid lithium at the temperature T = 475
K. The solid lines present the molecular dynamics re-
sults with the pair-potential [25] convoluted with the
experimental resolution and involving the detailed bal-
ance condition. (◦ ◦ ◦) — the experimental data [37].
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Fig. 3. Dispersion of collective excitations of the lon-
gitudinal polarization for liquid lithium at the temper-
ature T = 475 K. (N N N) — the results of molecu-
lar dynamics simulation. (◦ ◦ ◦) — the experimen-
tal data on inelastic scattering of X-rays [37]. Dot-
ted line represents the extrapolated hydrodynamic re-
sult ωc(k) = csk, where cs = 4554 m/s is the adiabatic
sound velocity. The vertical dashed straight line cor-
responds to the boundary of the first pseudo-Brillouin
zone.

Figure 3 shows the dispersions of the high-frequency
I(k, ω) peak determined from the molecular dynamics
simulation and experimental data on inelastic X-rays
scattering [37]. The results of molecular dynamics sim-
ulation are seen to precisely reproduce the experimental
data. Moreover, all (experimental and simulation) results
indicate the presence of the so-called positive dispersion
effect [5] in the microscopic region under study: the val-
ues of ωc(k) exceed the values predicted by the usual
hydrodynamic theory with a linear dispersion [29], and
a sound velocity cs = 4554 m/s.

Figure 4 presents the calculated memory functions for
liquid lithium at T = 475 K obtained with help of the
relations (7) and (12) based on the data of molecular
dynamics simulation. In Fig. 4, all memory functions for
the considered values of wave numbers are characterized
by oscillating behavior.

Figure 5a represents the relaxation parameters of the
dynamic structure factor for lithium melt, calculated us-
ing the relations (11) and (12) based on the molecu-
lar dynamics simulation data. In Fig. 5a, all parame-
ters with an increase in the wave number have a similar
k-dependence. The behavior of the parameters ∆4(k)
and ∆5(k) has a single character from the hydrodynamic
regime to the range of the wave number k ≈ 2.2 Å−1,
which corresponds to value k ≈ 0.87km (km is the po-
sition of the main maximum in the static structure fac-
tor S(k)). However, the parameters ∆4(k) and ∆5(k)
diverge with increasing values of wave numbers. The in-
set in Fig. 5 represents the ratios of the frequency re-
laxation parameters ∆n(k)/∆1(k) for n = 2, 3, 4, 5 and
for the range of values of high wave numbers. As can
be seen, the results of numerical calculations for the val-
ues of ∆n(k)/∆1(k) correctly reproduce the short-wave
asymptotic (the region of the free-particle dynamics).

Fig. 4. Time correlation function of the density fluc-
tuations F (k, t) = M0(k, t) and the memory function
Mn(k, t) of the first four orders (n = 1, 2, 3, 4) of the
lithium melt at the temperature T = 475 K for the
wave numbers k = 0.52 Å−1 and k = 0.98 Å−1.

Fig. 5. (a) Relaxation parameters of the dynamic
structure factor of lithium melt at the temperature
T = 475 K, obtained on the basis of molecular dy-
namics simulation data with the pair interatomic in-
teraction potential [25]. (b) Time scales characterizing
the relaxation processes of the density fluctuations in
liquid lithium near the melting point. Inset: ratio of
the frequency relaxation parameters ∆n(k)/∆1(k) for
n = 2, 3, 4 and 5.

Figure 5b presents the time scales τn(k) = 1/
√
∆n(k)

characterizing the relaxation processes of the density
fluctuations in liquid lithium near the melting point.
In Fig. 5b, the timescales of the relaxation processes re-
lated to the dynamical variables A(n) (n ≥ 4) are approx-
imately equal, i.e., τn(k) ≈ τn+1(k) [38]. Consequently,
the dynamics of the density fluctuations in liquid lithium
is characterized by some minimal time scale, which is
τmin ∼ 10−15 ÷ 10−14 s.

5. Conclusion and discussions

The study of the nature of the collective modes in liq-
uid metals belongs to one of the most fundamental prob-
lems of condensed matter physics. So, for example, liquid
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metals are suitable candidates to test the proposed the-
ories (mode-coupling theories, theory of the generalized
collective modes, classic theory of moments, etc.) of the
microscopical collective dynamics in a liquid [29]. Within
these approaches, memory functions and relaxation pa-
rameters play a key role. Therefore, all the relaxation
mechanisms controlling the collective and single-particle
dynamics, are introduced at the level of the correspond-
ing second or higher order memory functions.

In this paper we have presented molecular dynamic
simulation results of the structural relaxation of the
density fluctuations of the lithium melt near the melt-
ing point. The frequency characteristics of the dy-
namic structure factor for a wide range of wave num-
bers are obtained. It is shown that the ratios of the
relaxation parameters ∆n(k)/∆1(k) for n = 2, 3, 4, 5
in the short-wave region satisfy for the condition:
limk→∞∆n(k)/∆1(k) = n. The behavior of the relax-
ation parameters∆4(k) and∆5(k) has a unified character
for the range of values of wave numbers from the hydro-
dynamic regime (k → 0) to the values of k above the
boundary of the first pseudo-Brillouin zone (k > km/2).
The characteristic time scales of the process of structural
relaxation of the density fluctuations are determined.
The memory functions up to the fourth order for the time
correlation function of the density fluctuations for liquid
lithium at the temperature T = 475 K were calculated.
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