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The present paper reports on the recent activity of the data analysis software development for total-reflection
high-energy positron diffraction, a novel experimental technique for surface structure determination. Experiments
using TRHEPD are being conducted intensively at the Slow Positron Facility, Institute of Materials Structure
Science, High Energy Accelerator Research Organization, revealing surface structure of interest. The data analysis
software provides a solution to the inverse problem in which the atomic positions of a surface structure are de-
termined from the experimental diffraction data (rocking curve). The forward problem is solved by the numerical
solution of the partial differential equation in the quantum scattering problem. A technical demonstration with
a test problem was carried out to confirm the software functioned as expected. Since the analysis method has a
general mathematical foundation, it is also applicable to other experiments, such as X-ray or electron diffraction
experiments.
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1. Introduction

Since material properties are governed by the atomic
structure or the type and position of each atom, the in-
formation of the structure is critical in discerning these
properties. For bulk structure, X-ray diffraction is the
standard technique used to determine the structure of
the crystals of new materials, proteins, and so on. For
surface structure, however, a standard technique for the
definitive determination of the atomic structure of the
topmost and subsurface atoms is not yet established.

TRHEPD has been developed as a novel method
for such surface structure determination. At the Slow
Positron Facility (SPF), Institute of Materials Structure
Science (IMSS), High Energy Accelerator Research Orga-
nization (KEK) much work has been conducted, success-
fully revealing surface structures of the surfaces of inter-
est (see review [1]). For example, TRHEPD determined
the structures of the rutile-TiO2(110) (1 × 2) surface
which had been the subject of debate over 30 years [2].

Here, we report recent activity on the software devel-
opment for the analysis of TRHEPD data. It is based
on the inverse problem in which the surface structure is
determined from the experimental diffraction data.

∗corresponding author; e-mail:
D19T1101M@edu.tottori-u.ac.jp

The present paper is organized as follows: experiment
and theory of TRHEPD is explained briefly in Sect. 2.
Overview of the data analysis software is presented in
Sect. 3. Section 4 details the technical demonstration of
the software and associated discussions. A summary and
a future aspect is given in Sect. 5.

2. TRHEPD

Features of TRHEPD are shown schematically in Fig. 1
and will be briefly explained in this section. The experi-
mental basis is the same as in RHEED experiments.

The problem is to determine the positions of the atoms
at the top-most surface layer and several subsurface lay-
ers. Hereafter, the z axis is assumed to be perpendicular
to the material surface and the coordinates are denoted
as r = (x, y, z). Na is the number of the atoms of which
positions ((xi, yi, zi), i = 1, 2, . . . , Na) will be determined
through the data analysis.

The data analysis provides a solution to the inverse
problem in which the surface structure, X, is determined
from the experimental diffraction data Dexp(Dexp ⇒ X).
The calculated diffraction data Dcal is obtained from the
position of the atoms X [3]. and the calculation is called
the forward problem (X ⇒ Dcal(X)).

2.1. Experiment

The TRHEPD experiment is shown schematically
in Fig. 1a. The incident wave direction is charac-
terized by the glancing angle θ and the azimuthal
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Fig. 1. Schematic diagram of (a) experimental setup
and (b) typical paths of the beams for the positron
(THREPD) and electron (reflection high-energy elec-
tron diffraction, RHEED) cases.

angle ϕ. We also define the incident wave vector
K(in) = (K cos θ cosϕ,K cos θ sinϕ, 0) projected on the
x–y plane, where K is the positron wave number in the
vacuum.

Diffraction spots on the screen in Fig. 1a are charac-
terized by the two-dimensional indices (p, q) of reciprocal
lattice rods. The intensity of the specific spots, Dpq, is
observed as a function of the incident glancing angle, θ
(Dpq = Dpq(θ)), and called the rocking curve. The rock-
ing curve, Dpq(θ), depends also on the azimuthal angle ϕ,
which is fixed during a rocking curve measurement. The
spot with the indices of (p, q) = (0, 0) is usually brightest
and called 00 spot. This paper focuses on the 00 spot and
we will drop the indices for simplicity (D = D(θ)). The
observed data among discrete glancing angles is denoted
as D ≡ (D(θ1), D(θ2), . . . , D(θM )), where a typical num-
ber of the glancing angles is M = 50–100. The present
data analysis is carried out by the normalized vector data
D (|D| = 1) and similarly normalized calculated values.

It is important that the rocking curve with a given
azimuthal angle ϕ is hardly affected by the atomic coor-
dinate parallel to the vector K(in). If the vector K(in)

is parallel to the y-axis, for example, the rocking curve
depends only on the x and z components of the atomic
position (D = D(x1, x2, . . . , xNa

, z1, z2, ..., zNa
)). In ad-

dition, one can choose the azimuthal angle intentionally
shifted from low-index zone axes so that the rocking
curve practically depends only on the z components of
the atomic position (D = D(z1, z2, . . . , zNa

)) — this is
called a one-beam condition [5]. Another choice for the
azimuthal angle is that it is set along a low-index zone
axis — this is called a many-beam condition. These prop-
erties allow us to reduce the number of variables in the
data analysis from 3Na to Na. Such dimensional reduc-
tion is of great advantage in realizing fast and reliable
data analysis.

Therefore, the measurement procedure, typically, con-
sists of two stages, where three diffraction data sets at
different azimuthal angles are obtained. One data set

is provided by an experiment in a one-beam condition,
which is denoted as D(OB). The other two sets are pro-
vided by experiments in the many-beam condition, which
are denoted as D(MB1) and D(MB2). Mutually orthogo-
nal incident wave vectors K(in) were chosen for the two
data sets under the many-beam condition. The first stage
of the analysis procedure determines the z component of
the atomic position (z1, z2, ..., zNa) from the data set in
the one-beam condition (D(OB)). The second stage de-
termines the two components on the x–y plane, x and
y coordinates from the other two data sets each in the
many-beam condition (D(MB1),D(MB2)), in which anal-
ysis of the z components (z1, z2, . . . , zNa

) determined in
the first stage are fixed.

2.2. Theory

The theory or the forward problem (X ⇒ Dcal(X)) of
TRHEPD [3–5] is based on the quantum scattering prob-
lem of the positron wave function Ψ(r); the situation is
shown schematically in Fig. 1b. The partial differential
equation with a given glancing angle and an azimuthal
angle(

∆ +K2 + U(r)
)
Ψ(r) = 0 (1)

is solved numerically, so as to obtain rocking curve data
D = Dcal(X). Here U(r) is the crystal potential deter-
mined by the atomic positions X. The crystal potential
U(r) is periodic on the x–y plane and can be written by
the two-dimensional Fourier series

U(x, y, z) =
∑
m

Um(z) exp
(

i(k(m)
x x+ k(m)

y y)
)
, (2)

where (k(m)
x , k

(m)
y ) is the surface reciprocal lattice vector

of the m-th rod (pm, qm). In the numerical calculation,
the coordinate z is discretized by the mesh grid with an
equi-interval h (z := z0 + jh, j = 0, 1, 2, . . .). A typical
value of the mesh interval, h, is h = 0.02 Å.

The calculation under the one-beam condition [5] is
much faster than that under the many-beam condition,
since under the one-beam condition, only one Fourier
component (k

(0)
x , k

(0)
y ) = (0, 0) is non-zero in Eq. (2):

U(x, y, z) = U0(z). (3)
In this case, the wave function can also be written as
Ψ ≡ Ψ0(z) and Eq. (1) is reduced to a one-dimensional
scattering problem(

d2

dz2
+K2 sin2 θ + U0(z)

)
Ψ0(z) = 0. (4)

This calculation method and its Fortran software was
originally developed for electron diffraction (RHEED) by
one of the authors (Ichimiya) [3–5] and later modifed by
another (Hanada) [6]. It is applicable to TRHEPD, since
TRHEPD is differs from RHEED only in the sign of the
incident particle charge. As the electron beam penetrates
into deeper layers than the positron, owing to refraction
off the surface, as schematically shown in Fig. 1b, electron
diffraction is less sensitive to surface structure than the
positron diffraction.
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The forward problem solver (X ⇒ Dcal(X)) software
has been used in the data analysis to optimize the atomic
structure X [1]. Actual procedures, however, are based
on trial and error without using any numerical optimiza-
tion algorithm. In the present work we are developing
a numerical optimization algorithm which optimizes X
automatically.

3. Data analysis method

This section details the present method used for the
data analysis or the inverse problem (Dexp ⇒ X). The
inverse problem is solved by optimizing the residual func-
tion between the calculated and experimental diffraction
data

R(X) ≡ |Dcal(X)−Dexp| (5)
with a given experimental diffraction data Dexp, where
Dcal is also normalized (|Dcal| = 1). The function R(X)
is called the reliability factor or R-factor.

In general, optimization algorithms are classified into
local or global searches. Two typical algorithms are il-
lustrated in Fig. 2. Figure 2a shows a local search algo-
rithm with iterative updates, in which an initial structure
data X(0) is prepared and the data, X, is updated iter-
atively (X(0) ⇒ X(1) ⇒ X(2) . . . ⇒ X(i) ⇒ . . .), so as
to decrease R(X). Figure 2b, on the other hand, shows
a global search algorithm with a straightforward calcu-
lation on a mesh grid, which will be discussed later in
Sect. 4.2.

Fig. 2. Schematic figure for two optimization meth-
ods of the function R = R(X): (a) local search or
the iterative optimization, (b) global search or simple-
comparison optimization on grid.

The present paper focuses on a local search algorithm.
The iterative optimization is realized using the Nelder–
Mead algorithm [7, 8], a commonly used gradient-free
optimization algorithm, where the gradient (∇R) is not
calculated in any way. The iterative process is stopped
when it reaches a convergence criteria chosen by the user.
In this study, we developed a Python-based data analy-
sis software. The Nelder–Mead algorithm is realized by
the module in the scipy library (scipy.optimize.fmin).
The method is standard and the use of the scipy library
is not essential.

4. Technical demonstration and discussion

4.1. Technical demonstration

A numerical test problem was run for the technical
demonstration of our data analysis software. The test
problem used was to reproduce the Si(001)-2× 1 surface
structure. Studies of this structure, shown in Fig. 3, have
been reported in a number of papers, such as Ref. [9].
The two top-most silicon atoms form an asymmetric
dimer, where the z coordinate values of these atoms dif-
fer significantly. The higher (vacuum-side) atom and the
lower (bulk-side) atom of the surface dimer are denoted
as Si(high) and Si(low), respectively. The asymmetry
is induced to decrease the total surface energy by elec-
tron transfer from Si(low) to Si(high), which results in
a lone pair in the dangling-bond state at Si(high) and
an empty dangling-bond state at Si(low). The z coordi-
nates of the higher and lower atoms are denoted by z1
and z2 in Fig. 3, respectively, where the origin of the z
axis (z = 0) is located at the plane of the atoms in the
second surface layer.

In the present demonstration, the values of the z
component of the two top-most silicon atoms (z1, z2)
are determined from the diffraction data in the one-
beam condition. A numerically generated “refer-
ence” data Dref is used, instead of real experimental
data Dexp. The reference data Dref is generated nu-
merically for the known structure (z1, z2) = (z

(ref)
1 , z

(ref)
2 )

(Dref ≡Dcal(z
(ref)
1 , z

(ref)
2 )) and the R-factor is defined as:

R(z1, z2) ≡ |Dcal(z1, z2)−Dcal(z
(ref)
1 , z

(ref)
2 )|, (6)

where (z
(ref)
1 , z

(ref)
2 ) = (1.5832 Å, 0.8603 Å). A demon-

stration with the numerically generated reference data
was carried out in order to confirm that the Nelder–Mead
algorithm was suitable and reached the exact solution
((z1, z2) → (z

(ref)
1 , z

(ref)
2 )). When analyzing with experi-

mental data, an optimized value of R ≤ 10−2 is usually
acceptable in surface structure determination research.

Fig. 3. Atomic positions of Si(001)-2 × 1 surface with
an asymmetric surface dimer. The vertical axis (z axis)
is along the [001] direction, while the horizontal axis is
along the [110] direction. The periodic unit in the [110]
direction is indicated by the red arrowed line.
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Fig. 4. The data analysis for Si(001)-2×1 surface: (a)
the R-factor (R = R(z1, z2)) and (b) the z coordinates
of the surface atoms (z1, z2) are plotted as functions of
the iteration step i.

Fig. 5. The rocking curves of the Si(001)-2× 1 surface
of the initial and final structures are plotted by dashed
and solid lines, respectively. The rocking curve in the
reference structure is also plotted by circles.

The analysis results are summarized in Figs. 4 and 5.
Figure 4 shows the iterative optimization process. The
R-factor (R = R(z1, z2)) and the z coordinates of the sur-
face atoms (z1, z2) are plotted as functions of the iteration
step i, in Fig. 4a,b, respectively. Figures 4 and 5 indicate

that the structure (z1, z2) converges to the exact solu-
tion ((z1, z2) → (z

(ref)
1 , z

(ref)
2 )) correctly. The R-factor

changes from R = 0.037 at the initial structure (i = 0)
to R = 2× 10−6 at the final structure (i = 33). Figure 5
shows the rocking curve Dcal = Dcal(θ) in the initial and
final structure, where the reference data Dref = Dref(θ)
is also shown. Figure 5 confirms that the atomic coor-
dinates obtained by the search reproduce the reference
data correctly. The analysis was carried out on a note-
book PC with an Intel CoreTM i3-6006U processor and
the elapsed time was 72 s, including the computational
time and the file I/O time.

It should be noted that the difference in the atomic
positions (z1, z2) between the initial and the final struc-
tures is of the order of 0.1 Å in Fig. 4b and the difference
can be clearly observed in the rocking curves of Fig. 5.
This demonstrates that TRHEPD can give excellent se-
lectivity or an ultrafine spatial resolution in the order of
0.1 Å, if the experimental uncertainty of the observed
data is sufficiently small.

4.2. Discussion

A number of issues are discussed below on the current
and prospective versions of the data analysis software.
(I) The present paper has detailed a technical demonstra-
tion of the software. Data analysis with real experiment
is ongoing. (II) The forward problem solver code used is
planned to be parallelized for faster computation. Since
computations of the intensity {Dcal(θi)} with different i
numbers are independent, the procedure is ideal for par-
allelism on current computers. (III) Work is underway
to develop further software with the global search algo-
rithm shown in Fig. 2, so as to avoid local, not absolute,
optimization. The software presently used provides an
iterative optimization algorithm and requires an initial
guess for the structure. As such, the analysis is based
on a local search algorithm and can be trapped by a lo-
cal minimum of R(X). A simple-comparison algorithm
may require significant computational cost, because the
number of sets of atomic coordinates increases exponen-
tially with the increasing number of atoms and in reduc-
ing the mesh in the coordinates. However, this type of
algorithm is suitable for modern massive parallel super-
computers as the calculations of R = R(X) among differ-
ent atomic positions, X, of different atoms are indepen-
dent procedures. Our global search software is now being
tested on several supercomputers, such as the Oakforest-
PACS supercomputer in Japan. (IV) In addition, we plan
to develop another global search method based on the
Bayesian inference with a Monte Carlo (stochastic) algo-
rithm. The Monte Carlo algorithm is known as a reliable
and efficient sampling method. The method provides the
posterior probability of atomic positions through Bayes’
theorem and enables us to evaluate the uncertainty of
estimated atomic positions. This method has been ap-
plied to surface structure analysis by X-ray diffraction
experimentation [10].
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5. Summary and future aspect

A data analysis software is being developed for sur-
face structure analysis by the total-reflection high-energy
positron diffraction (TRHEPD). The software provides a
solution to the inverse problem, where the forward prob-
lem is a quantum scattering problem or partial differ-
ential equation. The software has a solid mathematical
foundation and shows promise for the analysis of real
experimental data. The program code will be available
online in the near future.

As a future aspect, the software will be promoted to
address general data analysis of surface structures, not
only for positron diffraction but also for X-ray and elec-
tron diffraction by simply changing the forward problem
solver.
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