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Dispersion of Transverse Waves
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In this work we investigate the influence of initial stress on the transverse waves propagation in single-wall
carbon nanotubes with small scale effects under ultrahigh frequency (above k = 1nm−1), using the nonlocal
continuum theory. The phase and group velocities are derived in a simple way. The effects of wave numbers,
scale coefficients and initial stress parameter on phase and group velocity are analyzed. The results show that
the dispersion properties of the transverse wave propagation in a single-wall carbon nanotube are induced by small
scale effects, which cannot appear in classical models. Also, it is clear that the increase of the scale coefficient and
wave number could be strengthened by the dispersion degree of the phase and group velocity of transverse waves.
In particular, the analysis shows that the compression initial stress in a single-wall carbon nanotube does not only
affect the number of transverse wave speeds and the magnitude of transverse wave speeds, but also the critical value
of the wave number at the wave speed changes. The effects of the initial stress and small scale on the transverse
wave propagation in single-wall carbon nanotubes may result in some complex dynamic phenomena of terahertz
sound waves propagation in the carbon nanotubes, which can be used as a useful reference for the designs of
nanodrive devices, nanooscillators and nanosensors.
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1. Introduction

The carbon nanotubes possess remarkable mechani-
cal and physical properties [1–4] leading to many poten-
tial applications such as fluid transport, fluid storage at
nanoscale, and nanodevices for drug delivery [5, 6]. In ad-
dition to experimental endeavors, CNT modeling is clas-
sified into two main categories. The first is atomic mod-
eling, which includes such techniques as classical molec-
ular dynamics (MD) and tight-binding MD and the den-
sity functional model [7–11]. Li and Chou [12] reported
an atomistic simulation of single-walled carbon nano-
tube (SWCNT) subjected to harmonic waves. Atomic
modeling is limited to systems with a small number of
molecules and atoms and is therefore confined to small-
scale modeling. The second category is continuum mod-
eling [13–16], which includes classical (or local) beam and
shell theories that are practical for analyzing CNTs for
large-scale systems. Successful work has been conducted
with continuum modeling, such as buckling analysis, dy-
namics studies, and mechanical property investigations
of CNTs [17–21].

Solid mechanics with elastic continuum model have
been regarded as an effective method and widely used
for studying the mechanical and physical properties of
CNTs [22, 23]. The nanostructures length scales are often
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sufficiently small, and hence for the applicability of clas-
sical continuum models, we need to consider the small
length scales such as lattice spacing between individual
atoms, grain size, etc. The conventional continuum mod-
els cannot handle scale effects. Hence, the best alter-
native is to use those methods which provides the sim-
plicity of continuum models and at the same time in-
corporate the effects of scale in such chosen continuum
models. The Erigena nonlocal elasticity theory [24, 25]
is a useful tool in treating phenomena whose origins
lie in the regimes smaller than the classical contin-
uum models. In this theory, the internal size or scale
could be represented in the constitutive equations sim-
ply as material parameters. Such a nonlocal contin-
uum mechanics has been widely accepted and has been
applied to many problems including wave propagation,
dislocation, crack problems, etc. [26]. In recent years,
the application of nonlocal continuum mechanics in nano-
structures such as carbon nanotubes (CNTs), graphene
sheets and nanoplates has received a great interest [27].
On the other hand, the carbon nanotubes often suffer
from initial stresses due to residual stress, thermal ef-
fect, surface effect, mismatch between the material prop-
erties of the nanotubes and a surrounding medium, ini-
tial external loads, and may be due to any other physical
cause. In this field, the effects of initial stress on the non-
coaxial resonance of multi-walled nanotubes (MWNTs)
have been investigated by the theories of the Euler–
Bernoulli and Timoshenko beams, respectively, in Wang
and Cai [28] and Cai and Wang [29]. Zhang et al. [30]
studied the transverse vibrations of DWNTs under
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compressive axial load using the Euler–Bernoulli beam
theory. Lu et al. [31] adopted a nonlocal Euler–Bernoulli
beam model to analyze wave and vibration characteris-
tics of one-dimensional nanostructures with axially ini-
tial stress. Furthermore, Wang et al. [32] used a nonlo-
cal Timoshenko beam model to deal with free vibration
of micro- and nanobeams with initial stress. The vibra-
tions of single- and multi-wall carbon nanotubes have
been studied by various authors [33–37].

In this paper, we extend our study of waves propagat-
ing in carbon nanotubes. A model of transverse waves
propagation in pre-stressed single-wall carbon nanotubes
with small scale effects will be investigated in a simple
way. The governing equations for transverse waves have
been derived using Erigena’s nonlocal elasticity theory.
The numerical results are shown graphically.

2. Mathematical formulation

The local elasticity method is limited for practical cal-
culation of nanotubes. However, in the nonlocal contin-
uum theory presented by Eringen [24, 25], the stress at
a reference point is considered as a function of the strain
at every point in the body. Then, the long-range force
of microstructures can be considered and are applied
widely in fracture mechanics [38], contact mechanics [39]
and dislocation theory [40]. The most general form of
the constitutive equation for nonlocal elasticity involves
an integral over the entire region of interest. This inte-
gral contains a kernel function that describes the relative
influences of strains at various locations on the stress
at a given location. The constitutive equations of linear,
homogeneous, isotropic, nonlocal elastic solid with zero
body forces can be written as follows [25]:

σij,j = 0, (1)

σij =

∫
α (|x− x′| , τ)Cijklεkl(x′)dV (x′), ∀x ∈ V,

(2)
where σij is the nonlocal stress tensor, εij is the strain
tensor, Cijkl is the elastic modulus tensor in classi-
cal isotropic elasticity, ui is the displacement vector,
α(|x−x′|, τ) is the nonlocal modulus or attenuation func-
tion incorporating the nonlocal effects into the constitu-
tive equations. The quantity |x − x′| is the Euclidean
distance. In τ = e0a/l, e0 is a nonlocal scaling param-
eter, which has been assumed as a constant appropriate
to each material, a is an internal characteristic length,
e.g., length of C–C bond (0.142 nm) in carbon nanotube,
granular distance, etc., and l is an external characteristic
length, e.g., wavelength, crack length, size of the sample,
etc. and V is the region occupied by the body.

The cylindrical coordinates system used for describing
the wave propagation in the tubes is defined in Fig. 1.
The x coordinate is taken in the axial direction of
the shell, where the φ and z coordinates are in the cir-
cumferential and radial directions, respectively (Fig. 1).
The displacements of the nanotube are defined by ux, uφ

Fig. 1. Geometry of the tube with coordinate system.

and uz in the direction of x, φ and z axes, respectively.
The coordinates ux and uφ represent in-plane axial and
circumferential displacements of the tube wall midsur-
face, respectively, and uz represents the out-of-plane
transverse displacement of the tube wall.

It is observed from Eq. (1) that not only the strain
state of the reference location x has the influence on
the stress state at x, but also the strain state at x′ can
affect the stress state of the same location. It should
be noted that because the spatial integrals are involved
in Eq. (1), which result in the difficulty for solving
the nonlocal problem. However, these integrals equations
can be reduced to the partial differential forms under cer-
tain conditions with physically admissible kernels [25].
For the partial differential forms, the nonlocal constitu-
tive relation can be expressed as [41]:

σx − (e20a
2)∇2σx =

E

1− υ2
(εx + υεφ + υεz), (3)

σφ − (e20a
2)∇2σφ =

E

1− υ2
(εφ + υεx + υεz), (4)

σz − (e20a
2)∇2σz =

E

1− υ2
(εz + υεφ + υεx), (5)

σxφ − (e20a
2)∇2σxφ =

E

2(1 + υ)
εxφ, (6)

σφz − (e20a
2)∇2σφz =

E

2(1 + υ)
εφz, (7)

σzx − (e20a
2)∇2σzx =

E

2(1 + υ)
εzx, (8)

where ∇2 = ∂
∂x2 + ∂

∂y2 is the Laplace operator for
the Cartesian coordinates, E and ν are the elastic modu-
lus and Poisson’s ratio of grapheme sheet, respectively
and σkl is the shear strain. The parameter e0a is
the scale coefficient revealing the small-scale effect on
the responses of structures of nanosize. If the small scalar
parameter a vanishes, Eqs. (2)–(8) will revert to Hooke’s
law of classical elasticity for a planar stress problem.

The constitutive equations of the nanotube in the polar
coordinate system (r, φ), described by Erigena’s nonlocal
elasticity theory, are expressed as [41]:

σx − (e20a
2)∇2σx =

E

1− υ2
(εx + υεφ), (9)
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σφ − (e20a
2)∇2σφ =

E

1− υ2
(εφ + υεx), (10)

σφx − (e20a
2)∇2σφx =

E

2(1 + υ)
γφx, (11)

σxφ − (e20a
2)∇2σxφ =

E

2(1 + υ)
γxφ, (12)

where ∇2 = ∂
∂x2 + ∂

R2∂φ2 is the Laplace operator for
the polar coordinate system and σxσφ and σxφ are
the normal and shear stresses,

εx =
∂ux
∂x

, εφ =
1

R

(
∂uφ
∂x

+ uz

)
,

εij =
1

R

∂ui
∂j

+
∂uj
∂i

(13)

are the normal and shear strains. R is the radius mea-
sured from the mid-plane of the cross-section in the fol-
lowing SWCNT analysis. Furthermore, there is another
expression for the nonlocal continuum theory which is
called the strain gradient form [41]. In this model,
the gradient is exerted on the strain term. As the pi-
oneer work, Peddieson et al. [42] developed the nonlo-
cal form of the Euler–Bernoulli beam and predicted the
feasibility of the nonlocal continuum theory for nano-
structures. Sudak [43] used the nonlocal model to study
the buckling behaviors of nanotubes. From then on, there
is a growing interest of nonlocal continuum theory for
the nanosystems.

3. Transverse wave in SWCNTs

Since 1D nanostructure are concerned, it is reasonable
to set σφ = σxφ = 0, and the constitutive Eqs. (9)–(12)
reduce to

σx − η2
∂2σx
∂x2

=
E

1− υ2
∂ux
∂x

, (14)

where η = e0a.
For the transverse wave propagation in single-

walled carbon nanotubes, following the usual hypothesis
of displacements [44]:

ux = −z ∂uz
∂x

. (15)

Using (15) the constitutive Eqs. (9)–(12), and for
the transverse wave propagation in single-walled carbon
nanotubes, take the forms

σx − η2
∂2σx
∂x2

=
−zE
1− υ2

∂3uz
∂x3

. (16)

The developed dynamic equation of motion of the wave
propagation in the x-direction in SWCNTs with initial
stress takes the form

∂Q

∂x
− δ0

∂2uz
∂x2

= ρh
∂2uz
∂t2

, (17)

where Q is the shear resultant, h is the thickness of
the SWCNT, ρ is the mass density and δ0 is an initial
stress parameter, which takes positive value for compres-
sive loading and negative for tensile loading.

The shear resultant, which is obtained from the inte-
gration of the stress over the thickness of shell, is given
by Hooke’s law

Q = h
∂σx
∂x

. (18)

Substitution from Eq. (18) into Eq. (17) the wave mo-
tion equation can be derived as the following form:

∂2σz
∂x2

− δ0
h

∂2uz
∂x2

= ρ
∂2uz
∂t2

. (19)

Now eliminating σx from (16) and (19) leads to
E

1− υ2
∂4uz
∂x4

− δ0
h

(
η2
∂4uz
∂x4

− ∂2uz
∂x2

)
−ρ
(
η2

∂4uz
∂t2∂x2

− ∂2uz
∂t2

)
= 0. (20)

This is the final governing equation for transverse waves
propagating in SWCNTs under initial stress.

4. Frequency equation

In our study here, the φ-directional displacement uφ is
assumed to be zero and the harmonic solution of the dis-
placement could be written as [44]:

uz(x, t) = U exp(i(kx− ωt)), (21)
where i =

√
−1, U is the amplitude of the displacement,

k is the wave number of the transverse wave and ω is
the circular frequency of the transverse waves. The gov-
erning Eq. (20) becomes then

k2
[(

k2E

1− υ2

)
− δ0
h

(
η2k2 + 1

)]
−ρω2

(
η2k2 + 1

)
= 0. (22)

Solving the resulting frequency equation, the phase
velocity, CS = ω

k , can be found to be

CS =

√
k2E

ρ(1− υ2)Ω
− δ0
ρh
, (23)

where Ω = (1 + η2k2).
Obviously, transverse waves are present for initial ten-

sile loading δ0 < 0. On the contrary, for an initial com-
pressive loading, i.e., δ0 > 0, waves may not exist unless
the compressive loading δ0 is sufficiently small, satisfying

k2E

ρ(1− υ2)Ω
− δ0
ρh

> 0⇒ δ0 <
k2Eh

(1− υ2)Ω
. (24)

Moreover, from Eq. (23) it is clear that the relation be-
tween ω and k is nonlinear, which results from scale
coefficient η, then the transverse waves in SWCNTs
become dispersive, although this kind of elastic wave
is non-dispersive in the classic continuum theory [45].

Alternatively, solving Eq. (24), we obtain

k >

√
δ0(1− υ2)Ω

Eh
. (25)

Then, we conclude from above equation, for elastic
SWCNTs subjected to initial compressive stress,
the transverse waves could be propagated only for waves
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with larger wave numbers or cannot propagate for those
below a critical value of the wave number.

Consider a special case when the small scalar parame-
ter a vanishes (η = 0⇒ Ω = 1). This represents the case
of classical elasticity. Then the above result reduces to

k >

√
δ0(1− υ2)

Eh
. (26)

Furthermore, the group velocity, Cgs = dω
dk , can be

obtained as

Cgs =

√
Ek2

ρ(1− ν2)Ω
− δ0
ρh

×
[
1 +

Ehk2

Ehk2Ω − δ0(1− ν2)Ω2

]
. (27)

5. Results and discussion

In order to realize the role of important parameters
on the transverse waves propagation in a single-walled
carbon nanotubes, some instructive parametric studies
are carried out. In this regard, the effects of small scale
and initial stress on the dynamic response of SWCNTs
are studied in some detail. For this purpose, the Young
modulus E = 1 TPa, the mass density ρ = 1340 kg/m3

and the Poisson ratio ν = 0.27 [35] and the SWCNT
was the (40,0) zigzag tube with an effective diameter
of 3.13 nm.

The most remarkable feature in Fig. 2 is that when
the wave number is smaller than 1 nm−1, the disper-
sion relations for different scale coefficients seem to be
zero. Compared with the corresponding case without
the nonlocal effect (i.e., η = 0), which is viewed as the
small scale effect, will arise gradually with the increases
of wave number k. The higher the mode is, the higher
the scale effect can be observed. Also, comparisons show
that the change tendency of the frequency of transverse
waves in SWCNTs with initial compression stresses (b)
and tensile initial stress (c) is very small. It can be seen
from Fig. 2 that the frequency value estimated by the lo-
cal elastic theory is higher than that by the nonlocal
continuum model. For almost all of the wave numbers
the frequency corresponding to η = 2 nm is the small-
est. It implies that dispersion relation can be strength-
ened by increasing the scale coefficients. As a result,
the small scale effects should be considered in the wave
propagation properties in the carbon nanotubes. More-
over, the dispersion phenomenon of the transverse wave
in pre-stressed carbon nanotubes (CNTs) is an interest-
ing observation, which cannot be found in the classical
model.

In order to illustrate the scale and initial stress effects
on the transverse wave dispersion properties, the phase
velocity Cs and the group velocity Cgs are computed and
displayed in Figs. 3 and 4, respectively.

Figure 3 shows the relation between the phase velocity
Cs and the wave number k (m−1) for different values of
scale coefficients (η = 0, 1, 2) and initial stress parameter

Fig. 2. Dispersion relation for single-wall car-
bon nanotubes for different values of scale coeffi-
cients (η = 0, 1, 2) and the initial stress parameter
(a) δ0 = 0.0, (b) δ0 = 0.2, and (c) δ0 = −0.2.

(a) δ0 = 0.0, (b) δ0 = 0.2, and (c) δ0 = −0.2. The most
remarkable feature in Fig. 3 is that the value of the phase
velocity is the same for η = 0 at δ0 = 0.0, 0.2, −0.2. How-
ever, the phase velocity decreases with the wave number
increasing. It means that the classical continuum the-
ory is not accurate to predict the mechanical response of
CNTs. It is also clear from Fig. 3 that when the initial
stress in SWCNTs is the compressive stress (b), trans-
verse phase velocity increases gradually starting from
lower frequency (k = 0 nm−1), and when the initial stress
in SWCNTs is the tensile stress (c), transverse phase ve-
locity increases gradually starting from higher frequency
(k = 0.5 nm−1).
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Fig. 3. Phase velocity Cs vs. wave number for differ-
ent values of scale coefficients (η = 0, 1, 2) and the
initial stress parameter (a) δ0 = 0.0, (b) δ0 = 0.2, and
(c) δ0 = −0.2.

Figure 4 shows the relation between the group ve-
locity Cgs and the wave number k (1/m) for different
values of scale coefficients (η = 0, 1, 2) and the ini-
tial stress parameter (a) δ0 = 0.0, (b) δ0 = 0.2, and
(c)δ0 = −0.2. Comparisons show that the change is
clearly observed in the case of δ0 = 0.2. From Fig. 4
one can see that when the initial stress in SWCNTs is
the tensile stress (c), transverse group velocity increases
gradually starting from lower frequency (k = 0 nm−1),
and when the initial stress in SWCNTs is the compressive
stress (b), transverse phase velocity increase gradually
starting from higher frequency (k = 0.5 nm−1).

From Figs. 3 and 4 it is necessary to take the nonlocal
model into account to investigate the wave characteristics
in CNTs, especially for larger wave numbers.

Fig. 4. Group velocity Cgs vs. wave number for dif-
ferent values of scale coefficients (η = 0, 1, 2) and the
initial stress parameter (a) δ0 = 0.0, (b) δ0 = 0.2, and
(c) δ0 = −0.2.

The phase velocity and the group velocity versus
the scale coefficient with the nonlocal model are pre-
sented in Figs. 5–7. The wave number k used in the cal-
culation is 0.1×109, 1×109 and 5×109 1/m. From Fig. 5
it can be seen that the values of phase velocity and group
velocity are almost the same for smaller wave numbers
(e.g. k = 0.1 × 109 1/m) at δ0 = 0.0, which implies
that the scale and initial stress effects are not obvi-
ous. However, these effects become remarkable with the
wave number becoming larger in Figs. 6 and 7. Both of
the velocities decrease as the scale coefficient increases.
In Figs. 5–7 the phase and group velocities decrease to
zero when the scale coefficient is about 1 nm at tensile
initial stress (c). Comparisons show that the effect of
initial stress is clearly observed in the case of δ0 = 0.2
(compression initial stress) for k = 0.1 × 109, 1 × 109

(lower frequencies).
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Fig. 5. Phase velocity Cs and group Cgs velocities vs.
scale coefficient with wave numbers k = 0.1× 109 1/m
for different values of the initial stress parameter
(a) δ0 = 0.0, (b) δ0 = 0.2, and (c) δ0 = −0.2.

6. Conclusion

The main contribution in this work is to describe
the scale and initial stress effects on the transverse wave
speeds in SWCNTs based on the nonlocal elastic theory.
Explicit formulas are derived for predicting the scale and
initial stress effects of SWCNTs based on nonlocal elas-
tic theory. The expressions of the phase velocity and
the group velocity are presented. The numerical simula-
tions are performed with the consideration of small scale
and initial stress effects. We conclude that the classical
continuum theory is not suitable and the nonlocal contin-
uum model should be employed to investigate the trans-
verse wave characteristics in SWCNTs. The transverse
wave propagation in pre-stressed single-wall carbon nano-
tubes becomes dispersive, which results from the small

Fig. 6. Phase velocity Cs and group Cgs velocities vs.
scale coefficient with wave numbers k = 1× 109 1/m
for different values of the initial stress parameter
(a) δ0 = 0.0, (b) δ0 = 0.2, and (c) δ0 = −0.2.

scale effects. The dispersion degree can be strengthened
by increasing the scale coefficient. The scale effects on
the phase and group velocities become more remarkable
for larger wave numbers. Characteristics of the trans-
verse waves propagation in SWCNTs were discussed, and
obtained results turn out that the phase and group ve-
locities are sensitive to initial stress for higher frequen-
cies. As a result, for elastic SWCNTs subjected to initial
compressive stress, transverse waves can propagate only
for waves with larger wave numbers or cannot propa-
gate for those below a critical value of the wave number.
The effects of initial stress on the transverse wave prop-
agation in the SWCNTs may result in some complex dy-
namic phenomena of terahertz sound waves propagation
in the SWCNTS, which can be used as a useful reference
for the designs of nanoelectronic and nanodrive devices,
nanooscillators, and nanosensors.
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Fig. 7. Phase velocity Cs and group Cgs velocities vs.
scale coefficient with wave numbers k = 5× 109 1/m
for different values of the initial stress parameter
(a) δ0 = 0.0, (b) δ0 = 0.2, and (c) δ0 = −0.2.
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