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This paper presents a computational model used for quantitative analysis of heat conduction process in a flat

bed of steel round bars. For this purpose, an approach based on using the analogical mathematical description
of the electricity and heat flow phenomena was applied. Furthermore, this model is semi-empirical since it uses
dependencies determined based on experimental research. The basis for deriving the mathematical dependencies
is the geometric model of the system studied, defined by the so-called elementary cell. Each of the mechanisms
of heat conduction that occurs within the cell was assigned an appropriate thermal resistance. The total thermal
resistance of a cell is a combination of parallel and serial connections of individual resistances. The calculations
were made for the temperature range of 0–800 ◦C, for four bar diameters and two porosities.
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1. Introduction

Round bars belong to the basic steel products.
In many cases, these elements are heat treated to en-
sure the required mechanical and technological properties
of the bars. During these operations, the bars are most
often heated in the form of cylindrically shaped bun-
dles [1, 2]. This is a very specific type of charge because,
as shown in Fig. 1, it has a porous structure. With this
feature, heat transfer in the bundle is a combination
of heat conduction and thermal radiation. The knowl-
edge of the course of these processes is fundamental for
prediction of the temperature distribution in the heated
charge [3, 4]. Previous publications have been devoted
to the issue of thermal radiation in the area of the bar
bundle [5,6], whereas this paper presents a mathematical
model describing the phenomenon of heat conduction.

2. Analysis and modelling

Thermal conduction through the bar bundle is
a combination of the following mechanisms: conduction
across individual bars, conduction in free spaces filled
by gas, and contact conduction between adjacent bars.
An approach of assigning individual thermal resistances
to each of these mechanisms can be used to analyse
heat conduction. This method is based on the analogy
of the phenomena of electrical and thermal conduction,
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which results from the similarity of the mathematical
notation of two laws: Ohm and Fourier [7]. According
to Ohm’s law, electrical resistance Rel is the quotient
of voltage ∆V and current flow I

Rel =
∆V

I
. (1)

In the case of heat flow, analogical value to ∆V is
temperature difference ∆t, while current I corresponds to
heat flux q. Base on this analogy, an appropriate thermal
resistance Rt can be assigned to the electrical resistance

Rt =
∆t

q
. (2)

Fig. 1. The frontal surface of the round bar bundle
showing its porous structure.
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Fig. 2. Geometric model of the charge: (a) part
of the bar bed, (b) elementary cell used to analyse ther-
mal resistances.

The starting point for the analysis of the prob-
lems discussed is the geometric model of the charge.
Such a model represents a flat bed of bars with a stag-
gered packing, whose fragment is shown in Fig. 2a.
The basis for establishing all mathematical relations is
to isolate a repetitive part from the bed (Fig. 2b), which
is termed an elementary cell. This cell contains parts of
bars from two adjacent layers and is divided into two ver-
tical sections, marked as I and II, parallel to the heat flow
direction. In the boundary of section I, there are three
elements (eI1, eI1, and eI3) corresponding to the part of
the bar from the first layer, the part of gap and the part
of the bar from the second layer, respectively. There are
two elements within section II: eII1 and eII2, relating to
the part of the bar from the top layer and the remaining
part of the gap.

The geometric quantities to be used when defining
the elementary cell are: the diameter of the bar db and
the width of the gap between the bars from one layer lg.
Based on these two parameters, the vertical dimension
of the cell δc and the horizontal dimension of the sec-
tions I and II are designated

δc =

√
d2b − [0.5 (db + lg)]

2
, (3)

lI = 0.25 (db − lg) , (4)

lII = 0.5lg. (5)
When analysing the thermal resistance of individual el-

ements of the elementary cell, their dimensions in the di-
rection of heat flow are important parameters (in Fig. 2b,
these are vertical dimensions). The minimum and max-
imum dimensions of the individual components are pre-
sented in Table I. The values of dimensions δ1 and δ2
result from the Pythagorean theorem, because they con-
cern one of the legs of a right triangle, the other leg with
the dimensions lI1 + lII and lII, whereas hypotenuse is
the half of the bar diameter. The individual elements
can be assigned the corresponding thermal resistances,
which are also presented in Table I.

TABLE I

Minimum and maximum dimensions and thermal resis-
tances of individual elements of the elementary cell.

Element
Minimal
dimension

Maximal
dimension

Thermal
resistance

eI1 δ1 δ2 RI1

eI2 0 δ3 = δc − δ2 RI2

eI3 0 δc − δ1 RI3

eII1 δ2 δ4 = 0.5db RII1

eII2 δ5 = δc − δ4 δ3 = δc − δ2 RII2

Fig. 3. The method of transforming the bar surface:
(a) cylindrical surface, (b) stepped surface.

Thermal resistance R of a flat layer with thermal con-
ductivity k, and the dimension δ is described [7] by
the equation:

dx = 0.5db/n. (6)
However, it cannot be applied directly to our case, be-
cause the surfaces of the individual elements are not
perpendicular to the direction of heat flow. Therefore,
the actual cylindrical surfaces should be replaced by
stepped surfaces, as illustrated in Fig. 3. Then, the ele-
mentary cell element is divided into a series of sections
parallel to the direction of heat flow with the width dx,
where n is the number of sections into which half
the diameter of the bar is divided.

According to the Pythagorean theorem, the dimen-
sion δi of a given section is determined from the equation

δi =

√
(0.5db)

2 − x2i (7)
where

xi = dx (i− 0.5) (8)
and i is a number of the i-th section.

According to this methodology, the thermal resistance
of the i-th section is

Ri =
nδi
k
. (9)

Thermal resistance of the entire element Re is calculated
as a parallel connection of the resistances of individual
sections.



Computational Model of Heat Conduction in the Steel Round Bar Bundle 1003

TABLE II

Thermal resistance of the bar with a diameter of 20 mm
depending on the value of n.

n
Thermal resistance
×10−7 [m2K/W]

Result
difference [%]

10 2786 9.25
50 2648 3.84
100 2618 2.67
500 2578 1.10
1000 2567 0.67
5000 2556 0.24
10000 2553 0.12
50000 2550 0

The value of thermal resistance of individual ele-
ments determined by means of the presented method-
ology, due to the transformation of cylindrical surfaces,
depends on the sections number n. The thermal resis-
tance of each element is more similar to the actual value,
for greater values of n. Table II shows the influence
of the value of n on the results of calculation of the ther-
mal resistance of the bar with a diameter of 20 mm.
The calculation assumes that the thermal conductivity
of the bar is 50 W/(m K). In the right column of Table II
the percentage difference of the resistance of the Rb−n bar
obtained for particular values of n relative to the re-
sistance value Rb−nmax obtained for nmax = 50000
is presented

δRb =
Rb−n −Rb−nmax

Rb−nmax

. (10)

As can be seen in the division of the bar for 1000 sections,
the difference in the result does not exceed one percent.

In calculations, the n-value for which the area of the el-
ementary cell was divided was assumed to be 10000.

In the cell area, in addition to the resistances listed
in Table I, there is also the contact thermal resistance Rct

between adjacent bars. The value of this resistance,
depending on the diameter of the bar and the tem-
perature, is calculated from the equations determined
experimentally [8]:

Rct =
(
B1t

2 −B2t+B3

)
× 10−4 (11)

where
B1 = 0.0023db + 5 × 10−5, (12)

B2 = −1.96db − 0.036, (13)

B3 = 1346.5db + 47.8. (14)
The changes in Rct resistance values of bar bundles with
diameters of 10, 20, 30, and 40 mm in the temperature
range of 0–800 ◦C are shown in Fig. 4. The smaller bar
diameter is, the lower is the resistance. At the same time,
this parameter assumes a minimum value for each case
at a temperature of approximately 350 ◦C. The obtained
values of resistance Rct are generally within the range
of 5–10 × 10−3 m2K W−1.

Fig. 4. Contact thermal resistance depending on
the temperature and bar diameter.

Fig. 5. Thermal resistance network for heat conduc-
tion through an elementary cell.

The total thermal resistance for a cell Rto is calcu-
lated as a combination of parallel and serial connec-
tions of the resistances mentioned above. The equivalent
system of the connections of these resistances is shown
in Fig. 5.

Results and discussion

Four bar diameters (10, 20, 30, and 40 mm) and two
porosities were taken into account in the calculations of
the beds analysed. Bed porosity in the adopted geomet-
ric model is a function of the gap width lg. Two val-
ues of this parameter were assumed for the calculations:
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Fig. 6. Total thermal resistance of bar bed with:
(a) porosity of 0.145, (b) porosity of 0.214.

0.1dp and 0.4dp. These values of lg correspond to the
porosities of 0.145 and 0.214, respectively. The model
also takes into account that the bar thermal conductivity
and the gas thermal conductivity change with tempera-
ture. All calculations were performed for the temperature
range of 200–800 ◦C.

During the analysis of calculated results, the val-
ues of Rto resistance were presented as first (Fig. 6).
Figure 6a applies to bed with a porosity of 0.145, while
Fig. 6b refers to bed with a porosity of 0.214. The resis-
tance Rto is slightly lower for beds with higher porosity.
This can be explained by the fact that the dimension
of the cell δc decreases with the increase of the gap be-
tween the bars, and according to the Eq. (6), the higher
the value of δ2, the higher the thermal resistance of the el-
ement. The obtained curves, both in terms of shape
and values, are very similar to curves obtained for re-
sistance Rct. This shows that the intensity of heat con-
duction in the system studied is primarily determined
by the contact conductivity at the points of contact
of the bars from the subsequent layers.

It is critical for the analysis to what extent the to-
tal thermal resistance of the beds analysed differs from
the thermal resistance for conduction in solid steel Rcd.

Fig. 7. Thermal resistance for conduction in solid
steel: (a) results for cell C1, (b) results for cell C2.

The values of resistance Rcd were calculated from Eq. (6),
where the cell height for a given case was used in the nom-
inator as described in the Eq. (3). Dimensions δc ob-
tained for a bed with a porosity of 0.145 were de-
noted as C1 cell, whereas for a bed with a porosity
of 0.214 - as C2. The results of calculations of resis-
tance Rcd for both cells depending on temperature and
bar diameter are shown in Fig. 7.

As can be seen, the values of resistance Rcd,
which for the cases analysed are in the range
of 0.1–1.2 × 10−3 m2K/W, are more than an order
of magnitude lower than the values of resistance Rsto.
Furthermore, the resistance Rcd increases with tempera-
ture, which is due to the nature of the changes in the ther-
mal conductivity of steel. A direct comparison of these
two resistances was made, for which the concept of re-
duced resistance Rrd defined as the quotient of Rto and
Rcd resistances was used

Rrd =
Rto

Rcd
. (16)

The values of resistance Rrd are shown in Fig. 8. It can be
seen that this parameter decreases as a function of tem-
perature and bar diameter, but increases as a function
of porosity: for the porosity of 0.145, it assumes values
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Fig. 8. Reduced thermal resistance of bed with:
(a) porosity of 0.145, (b) porosity of 0.214.

in the range of 8–34, whereas for the porosity of 0.214,
it is in the range of 10–42. These results show to what ex-
tent the heat conduction in a heat treated bundle of bars
differs from that in solid steel. This fact makes it very
difficult to choose heating curves for this type of charge.

The results presented so far show that the phenomenon
of contact conduction is of key importance to the heat-
ing of the bar bundle. The intensity of this heat transfer
mechanism is a function of a number of different factors
and can be controlled to some extent [9, 10]. Therefore,
the resistance Rto was calculated for two constant val-
ues of the resistance Rct, minimum and maximum values
for curves from Fig. 4 Rct−min = 5 × 10−3 m2 K W−1,
Rct−max = 10 × 10−3 m2 K W−1.

The results of the resistance Rto for a bed with
a porosity of 0.145 are shown in Fig. 9. It is notice-
able that with a reduction in the resistance Rct by half,
the total resistance Rto decreases almost proportionally.
For Rct−min, total resistance Rto is in the range
of 7–10 × 10−3 m2 K W−1, whereas for Rct−max, this is
the range of 9–19 × 10−3 m2 K W−1.

As before, the reduced resistance Rrd was calculated
also for this case. The values of this parameter are shown

Fig. 9. Total thermal resistance of bed with a porosity
of 0.145 for: (a) minimal Rct value, (b) maximal Rct

value.

in Fig. 10. For Rct−min, the parameter Rrd is in the range
of 8–50, whereas for Rct−max, this range is 12–88.

The results presented in Figs. 9 and 10 show that
for heat treatment of bar bundles, the preparation
of the charge should aim to ensure the best conditions
possible for contact heat conduction. This will shorten
the process time and help reduce energy consumption.

In the calculations presented so far, air was taken as
the gas phase that fills the gaps of the charge. However,
air is a gas with a relatively low thermal conductivity.
In the thermal treatment of steel products such as strips
and sheets, hydrogen is used to increase the intensity
of the heating process [11]. This factor is characterized by
the highest thermal conductivity among all gases, which
in the temperature range of 0–800 ◦C grows linearly from
about 0.18 to 0.52 W/(m K) [7].

Therefore, further calculations were made assuming
that the gaseous phase of the bar bed is hydrogen.
The results of these calculations for a bed with a poros-
ity of 0.145 are shown in Fig. 11. Figure 11a shows
the values of total resistance. Compared to the previous
case, where the gas phase was air, the total thermal re-
sistance is lower by approximately 2.5×10−3 m2 K W−1.
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Fig. 10. Reduced thermal resistance of bed with poros-
ity of 0.145 for: (a) minimal Rct value, (b) maximal Rct

value.

In percentage terms, this is a decline in Rto by ca. 24%.
Furthermore, Fig. 11b shows the values of reduced re-
sistance Rrd. In this case, this parameter is between
2.5 and 20. For the same bed, if air is the gas (Fig. 8a),
the reduced resistance ranges from 8 to 34. The dis-
proportion of the Rrd values between the two cases
is particularly noticeable in the initial temperature
range of 0–200 ◦C. Therefore, if this is only possi-
ble for technological reasons, the heating of the bars
in the bundles should be performed in the hydrogen at-
mosphere. This gas, due to its high thermal conductiv-
ity, contributes significantly to the intensification of heat
exchange.

4. Summary and conclusions

The presented results show that the process of heat
conduction in a bundle of bars, which is a porous
medium, is much less intense than in solid steel. The crit-
ical factor for this process is the contact heat conduction.
The thermal resistance of the analysed charge can also be
reduced by changing the atmosphere in which the heat
treatment is performed (replacing air with hydrogen).

Fig. 11. Resistance of bed with porosity of 0.145 with
hydrogen as gas phase: (a) total values, (b) reduced
values.

The heating pattern of a bar bundle is also affected by
bar diameter: the larger the diameter, the lager the re-
sistance Rto. On the other hand, the second geometric
parameter of the charge, i.e., porosity, has no significant
effect on the value of Rto.

In conclusion, it should also be mentioned that the ap-
proach used in the mathematical model to describe heat
conduction using an analogy to electricity is very con-
venient to use. Assigning the appropriate thermal re-
sistance to each of the identified heat conduction mecha-
nisms allows for building a universal and at the same time
relatively simple computational model. The presented
model is semi-empirical because the results of experimen-
tal studies were used to calculate the contact conduction
resistance.
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