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The Effects of Ripple Characteristics
on the Simultaneous Relativistic-Ponderomotive Self-Focusing
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In this study the nonlinear dependences of simultaneous ponderomotive-relativistic self-focusing on the ripple
characteristics including the initial width of the ripple, the phase difference between the electric fields of the main
beam and the ripple, the amplitude of electric field, and the position of the ripple on the wave front of the beam
are found. The intensity profile of the main beam is regarded as Gaussian profile and the ripple is assumed
as ring ripple. All the results are verified by solving for the boundary equation of beam width and good agreement
is obtained. The presented approach can be applied for other profiles of the main beam and also for other ripple
shapes such as the Gaussian ripples.
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1. Introduction

The recent advances in the ultra-short intense lasers
and their interaction with plasma have triggered im-
portant activities such as laser-driven fusion and mono-
energy electron beams [1, 2]. The mono-energetic elec-
tron beams, which are produced in laser-plasma acceler-
ators are the source of important electromagnetic radia-
tions such as X and gamma rays [3], ultra-short attosec-
ond pulses [4], and terahertz radiation [5]. In the above
mentioned applications, as well as all applications of rel-
ativistic laser-plasma interaction, the self-focusing phe-
nomena plays an important role, which must be taken
into account carefully. By means of this nonlinear ef-
fect, the intense pulses can be guided in the plasma
medium, over several Rayleigh lengths and without sig-
nificant energy losses [6–8]. Most of studies have in-
vestigated the self-focusing in plasma for beams with
smooth profiles of intensity, however, the experimental
investigations indicate that the beam intensity profile
is not so smooth and the intensity spikes, which are
superimposed on the laser beam, can change the in-
tensity profile and the growth of filamentary instabil-
ity in plasma is important nonlinear phenomenon, which
occurs because of the small perturbations in the main
beam [9–11]. Variety of studies investigate the growth
of different shapes of ripples superimposed on a laser
beam such as Gaussian ripple [12, 13] and the ring rip-
ple [14, 15]. Sodha et al. have investigated the dynamics
of a radially symmetrical ripple superimposed on a Gaus-
sian laser beam in collisional and collisionless magnetized
plasma [16]. In 2007 Sodha sinusoidal instability, super-
imposed on a uniform electromagnetic beam and the self-
focusing of a Gaussian ripple, superimposed on a uniform
electromagnetic beam [17]. Misra et al. investigated
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the ring ripple instability superimposed on a Gaussian
electromagnetic beam based on the paraxial-like ap-
proximation [18, 19]. In this approach which is valid
in the vicinity of maximum intensity of the ring rip-
ple, the dielectric function, irradiance, and the eikonal
are expanded around the maximum of the ring ripple.
Following the above mentioned approach Sodha et al.
studied the growth of a coaxial ring ripple on a Gaussian
electromagnetic beam in the simultaneous presence of
ponderomotive and relativistic self-focusing [20]. The si-
multaneous ponderomotive-relativistic self-focusing hap-
pens, when τpe < τ < τpi. Here, τpe, τpi, τ are the elec-
tron plasma period, ion plasma period, and the pulse
duration, respectively [20–22]. In their study the elec-
tric field of the propagating beam is assumed to be com-
posed of the radial electric fields of the Gaussian beam
and the ring ripple. This assumption results in the same
dielectric function for the ring ripple part as well as
the Gaussian part of laser beam and the same focusing
factors are obtained for both the main Gaussian beam
and the ripple. The authors then presented the govern-
ing equation for self-focusing based on the paraxial-like
approximation [20].

The above mentioned studies as well as other studies
indicate that the ripple parameters affect the focusing of
beam considerably [23–26]. However, the effect of rip-
ple parameters on self-focusing is assessed by means of
comparing the amount of focusing for few sets of pa-
rameters. However, the nonlinear and coupled effect
of the involved parameters on self-focusing cannot be
founded by the comparison between the focusing rate
of some different values and to the author’s best knowl-
edge, the accurate dependencies on the ripple parameters
have not been presented yet. In this study a simple ap-
proach is proposed which provides the precise relations
between the rate of focusing and the ripple characteris-
tics. In Sect. 2 the effective focusing parameter (EFP)
is introduced. Based on the introduced EFP, the self-
focusing dependence on the ring parameters are found
in Sect. 3.
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2. Effective focusing parameter

The main beam is regarded as the Gaussian beam
propagating along z-axis with the ring ripple as the small
coaxial perturbation. The electric vector of beam is re-
garded along y-axis and the profile of electric field is as-
sumed to be combination of the ripple and main Gaussian
beam. The electric field of the Gaussian beam with
the coaxial ripple can be expressed [20] as

E = ŷF0 e iωt, (1)
where

F0|z=0 = E00 e−r
2/2r20 + E10

(
r2

r20
− δ
)n/2

e−r
2/2r21 e iφp .

(2)
Here, F0 is the complex amplitude of beam, E00, E10, r0,
and r1 are the initial amplitude of the Gaussian beam,
the initial amplitude of the ripple, the initial width of the
Gaussian beam, and the initial width of the ripple, re-
spectively. The parameters n and δ are positive numbers
which describe the position of ripple on the wave front of
the main beam, φp is the initial phase difference between
the electric field vectors of the Gaussian and ring ripple
and ω is the angular frequency of beam. The first term
on the right hand side of Eq. (2) represents the Gaussian
beam and the second term is related to the radial distri-
bution of coaxial perturbation as the ring ripple.

Regarding the simultaneous relativistic-ponderomotive
self-focusing, the electron density Nez and the dielectric
constant of plasma ε aremodified [20], according to

N0z = Ne0

[
1 +

(
c2

ω2
po

)(
∇2γ − (∇γ)2

γ

)]
, (3)

ε(r, z) = 1− Ω2
p

N0e

N0
. (4)

Here, Ne0 is as the initial electron density (at z = 0),
c is the light speed, γ is the relativistic factor, ωp0 is
the angular frequency of plasma, while Ωp = ωpe/ω.
Based on the paraxial-like approximation the dielectric
function of plasma can be expanded [20] as follows

ε(χ, z) = ε0 − χ2ε2, (5)
where

χ2 =
[ r2

r20f
2
− (n+ δ)

]
,

ε0 = 1−
Ω2
p0√

1 + g0

− 2

ρ2f2

[
2g4(n+ δ) + g2

1 + g0
− g22(n+ δ)

(1 + g0)2

]
,

ε2 = −
g2Ω2

p0

2(1 + g0)3/2
+

1

ρ2f2

[
12g6(n+ δ) + 8g4

1 + g0

−12g2g4(n+ δ) + 4g22
(1 + g0)2

+
4g32(n+ δ)

(1 + g0)3

]
. (6)

Here ρ = r1
ω
c is the dimensionless parameter of the ini-

tial ripple width. The beam width parameter, denoted
by f , is the ratio of beam width along the propagation

with respect to the initial beam width. The coefficients
g0, g2, g4, g6 are defined as

g0 =
E2

0

f2

[
e−m(n+δ) + p2nn e−(n+δ)

+2pnn/2 e−(m+1)(n+δ)/2 cos(φp)
]
,

g2 = −E
2
0

f2

[
me−m(n+δ)

+pmnn/2 e−(m+1)(n+δ)/2 cos(φp)
]
,

g4 =
E2

0

f2

[m2

2
e−m(n+δ)

− 1

2n
p2 nn e−(n+δ) + pnn/2 cos(φp)

]
,

g6 =
E2

0

f2

[
− m3

6
e−m(n+δ) +

1

3n2
p2nn e−(n+δ) (7)

+pnn/2 e−(m+1)(n+δ)/2
(m

4n
+

1

3n2
− m3

24

)
cos(φp)

)
,

where m =
(
r1
r0

)2
and p = E10

E00
.

Using the wave equation and the modification of
dielectric constant (Eq. (4)) in the paraxial-like approxi-
mation, one can obtain the boundary equation of beam
width parameter [20], i.e.,

∂2f

∂ξ2
= − 1

2ε0

df

dξ

dε0
dξ

+

−2g2

(
2g0(g2 + 2λg4)− λg22

)
ε0g30f

3

+

(
4g0(2g4 + 3λg6) + g22

)
g0

ε0g30f
3

− ρ2g30ε2
ε0g30f

]
, (8)

where ξ = c
r20ω

z is the dimensionless propagation length.
Equation (8) describes the beam width variation along
the propagation axis. Substituting g0, g2, g4, g6, ε0,
and ε2 from Eqs. (6), (7) into Eq. (8), it can be seen
that beam width parameter is a complicated function of
Ωp, ρ, n, m, p, δ, and φp. Since the axially homogeneous
plasma dε0

dξ is zero, the first term on the right hand side
of Eq. (8) vanishes. Therefore this equation reduces to

∂2f

∂ξ2
−

(
−2g2

(
2g0(g2 + 2λg4)− λg22

)
g30ε0f

3︸ ︷︷ ︸
EFP

+

(
4g0(2g4 + 3λg6) + g22

)
g0

g30ε0f
3

− ρ2g30ε2
g30ε0f

)
︸ ︷︷ ︸

EFP

= 0. (9)

In order to solve Eq. (9) the main beam is required ini-
tially to be unfocused beam (f = 1) and the initial plain
wave front should be set at z = 0 (d/dz = 0), because
z = 0 is regarded as the beam waist. The second term in
left hand side of Eq. (9) is Effective Focusing Parameter
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(EFP), which comes from two effects. First one is the ef-
fect of natural diffraction, which causes the divergence
of beam, and the second one is the ponderomotive-
relativistic effect, which is responsible for the focusing
of beam.

In the differential equations as d2y(t)
dt2 + n1

y(t)n2
= 0,

if n1 is negative and n2 is positive integer number,
the solution for y(t) becomes a diverging function of t.
This means that y(t) starts to increase with respect to
its initial value. In turn, when n1 is a positive number,
the solution for y(t) becomes a converging (or oscillat-
ing) function of t. Therefore, when ∂2f/∂ξ2 is positive
(focusing condition), then the beam width parameter f
will decrease. The beam width will increase (divergence
of beam) when ∂2f/∂ξ2 is negative. However, if ∂2f/∂ξ2
is equal to zero, neither convergence nor divergence oc-
curs. The rate of focusing or divergence of beam is
related to the dominance of focusing or divergence effects,
namely if only the larger positive value of ∂2f/∂ξ2 pre-
dicts stronger focusing and the larger negative ∂2f/∂ξ2
refers to more divergence.

Following Moshkelgosha’s work [27], this treatment can
be applicable for studying the complicated and nonlinear
dependence of self-focusing on the involved parameters
and one can discuss the behavior of EFP in order to in-
vestigate the effect of concerned laser and plasma pa-
rameters on rate of beam width reduction. In the next
sections, the effect of laser and plasma on self-focusing is
discussed based on EFP parameter and the validity of re-
sults will be discussed by means of solving for the second
order boundary equation of beam width parameter.

3. The effects of ripple parameters
on self-focusing

In order to understand the effect of involved param-
eters on self-focusing, the EFP behavior is discussed.
The typical and standard set of parameters for the main
beam and the ring, is regarded as

n = 1, αE2
0 = 4, δ = 1, φp =

π

3
, Ω2

p0 = 0.8,

ρ = 4, p = 0.01, m = 0.001, r0 = 10 µm. (10)

The EFP parameter versus the ring characteristics is
plotted in Figs. 1–5 by changing the parameters (n, δ, φp,
αE2

10,m), one by one, in the acceptable range for each
parameter.

The EFP behavior versus n parameter is shown in
Fig. 1a. The key aspects of this figure are listed below

• For 0 < n < 2 the EFP parameter increases sharply
with increasing n. Therefore, the stronger focusing
of beam is expected by increasing n in this range.

• For 2 < n < 9 the inverse dependence of EFP on
n is seen, which predicts the weaker focusing for
larger n in this region.

• For n > 9 the value of EFP rises by increasing n
which predicts the stronger focusing at larger n.

Fig. 1. (a) The introduced EFP parameter versus n.
(b) The result of solving for self-focusing Eq. (9).

Fig. 2. (a) The introduced EFP parameter versus δ.
(b) The result of solving for self-focusing Eq. (9).
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Fig. 3. (a) The introduced EFP parameter versus m.
(b) The result of solving for self-focusing Eq. (9).

• As is mentioned, the negative, positive, and zero
value of EFP predicts the diverged, focused, and
unchanged beam, respectively. Therefore, for n < 1
and n > 7, the negative EFP predicts the beam
divergence and the positive EFP for 1 < n < 7
predicts the focusing of beam.

• Moreover, discussing the EFP behavior gives the
possibility for comparing the focusing of beam for
different initial conditions. For instance, Fig. 1a
shows the negative EFP for n = 0.5 and n = 10
with EFP n=0.5 <EFPn=10 . This predicts more
divergence of beams with n = 0.5 with respect to
n = 10.

The validity of the above mentioned results is verified
in Fig. 1b, by solving for the boundary in Eq. (9), and
the variation of beam width along the propagation length
shows good conformity with the EFP behavior.

Figure 2a indicates the nonlinear EFP behavior versus
δ parameter, which characterizes the position of the ring
ripple on the wave front of the main beam. The inverse
dependence of EFP at δ < 2 and the direct dependence
of EFP on δ for δ > 2 with the minimum value of EFP
at δ ≈ 2 is seen. Solving for the boundary in Eq. (9),
this result is confirmed in Fig. 2b.

The effect of m = (r1/r0)2, which represents the ratio
of ripple width with respect to the initial beam width of
the main beam r1, is shown in Fig. 3a. This figure indi-
cates the direct relation between EFP and m, which pre-
dicts the stronger focusing of the main beam for the rings
of larger beam width. The results of solving for Eq. (9)
for different m are presented in Fig. 3b and good confor-
mity with the EFP result is shown.

Fig. 4. (a) The introduced EFP parameter versus
αE2

10. (b) The result of solving for self-focusing Eq. (9).

Fig. 5. (a) The introduced EFP parameter versus φp.
(b) The result of solving for self-focusing Eq. (9).
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The effect of the initial intensity of the ripple on self-
focusing is studied in Fig. 4a, by plotting the introduced
parameter of EFP versus αE2

10. This figure indicates
the inverse dependence of EFP on αE2

10. It shows also
that for the initial set of parameters, as Eq. (10) for
αE2

10 < 0.001, the EFP is positive and therefore the beam
will be focused. For αE2

10 = 0.001 the EFP parame-
ter is zero, and therefore the beam size will not change.
In turn, for αE2

10 > 0.001 the EFP parameter is nega-
tive. Therefore, the beam will be diverged. Solving for
Eq. (9), this result is confirmed in Fig. 4b.

The effect of the initial phase difference between
the Gaussian beam and the ring ripple φp on EFP
is shown in Fig. 5a and the nonlinear dependence of
EFP on φp is seen. The results, after solving Eq. (9),
in Fig. 5b also indicates the good conformity with
the EFP behavior.

4. Conclusion

Based on the introduced parameter of focusing in
plasma, the nonlinear dependences of self-focusing on
the ripple parameters are found. Regarding the initial
standard set of parameters, the behavior of introduced
parameter indicates the nonlinear dependences of self-
focusing on the n and δ (the parameters which describe
the position of ripple on the wave front of the main beam)
and φp (the initial phase difference between the main
beam and the ring ripple). The direct dependence of
self-focusing on the initial width of the ripple and the in-
verse dependence on the intensity of ripple are also found.
The results of the beam width variation along the prop-
agation axis confirm the obtained results.
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