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This paper is dedicated to the memory of our friend Professor Eryk Infeld (1940–2019), who recently passed away.

In this note, we discuss the existence of analytic solutions to the nonlinear wave equations of the higher order
than the ubiquitous Korteweg–de Vries equation. First, we recall our recent results which show that the extended
Korteweg–de Vries equation, that is, the equation obtained within second-order perturbation approach possesses
three kinds of analytic solutions. These solutions have the same functional form as the corresponding Korteweg–de
Vries solutions. We show, however, that the most intriguing multi-soliton solutions, known for the Korteweg–de
Vries equation, do not exist for extended Korteweg–de Vries equation. Moreover, we show that for the equations
obtained in the third order perturbation approach (and then in any higher order) analytic solutions in the forms
known from Korteweg–de Vries theory do not exist.
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1. Introduction

The general problem of fluid motion with arbitrary
boundary conditions leads to a set of the Navier–Stokes
equations. In most cases attempts to solve these equa-
tions lead to extremely difficult problems. Therefore
in many cases, some simplified models are introduced.
For shallow water problem, physicists use the ideal fluid
model. This means that fluid is assumed to be incom-
pressible and inviscid with additional assumption that
the fluid motion is irrotational. Since in normal condi-
tions water viscosity and compressibility are very small,
the model should reproduce the fluid motion with reason-
able accuracy, until waves on the surface do not break.
Therefore, for ideal fluid one obtains a system of four
partial differential equations on two unknown functions,
the velocity potential φ(x, y, z, t) and the surface eleva-
tion η(x, y, t). This system contains the Laplace equation
for velocity potential, kinematic and dynamic boundary
conditions at the (unknown) surface, and the kinematic
boundary condition at the bottom. At this stage coordi-
nates and time are dimensional quantities.

The introduction of scaled dimensionless coordinates
to the system of the hydrodynamic Euler equations al-
lows us to apply a perturbation approach. The solution
of the velocity potential is assumed in the form of power
series with respect to the vertical coordinate, which when
the Laplace equation is applied results in power series in
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the small parameter β = (hl )
2. Here, h denotes the wa-

ter depth, l is an average wavelength. The boundary
conditions at the hard bottom and the free surface intro-
duce dependence on the second small parameter α = A

h ,
where A is the amplitude of the surface wave. The final
wave equation for the surface wave can be obtained in
different orders of the perturbation approach. It is worth
noticing that the result of the perturbation approach de-
pends on the relation between the small parameters. The
case when α = O(β), that is, α and β are of the same
order, corresponds to weakly dispersive nonlinear waves
and leads to the KdV equation [1]. It is worth noticing
that the KdV equation appears to be first order nonlinear
wave equation in several different systems, like multilayer
fluids, ion acoustic waves in plasma, electric circuits, and
propagation of optical impulses in fibers, among others,
see, e.g. monographs [2–4].

In the fixed reference frame and scaled dimensionless
coordinates the KdV equation has the following form (in-
dexes denote partial derivatives, e.g., η3x ≡ ∂3η

∂x3 ):

ηt + ηx +
3

2
αηηx +

1

6
βη3x = 0. (1)

It is well known that the KdV equation is integrable and
possesses an infinite number of invariants.

When the perturbation approach is continued to
second order, the resulted equation is known as the
extended KdV [5] or KdV2:

ηt + ηx + α
3

2
ηηx + β

1

6
η3x − α2 3

8
η2ηx

+αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+ β2 19

360
η5x = 0. (2)

(910)
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The KdV2 equation is not integrable. It has only one
exact invariant (mass). There exist, however, a number
of adiabatic invariants, which are constant up to second
order in small parameters, see. e.g. [6, 7].

Taking into account all terms up to the third order
in small parameters one arrives at the following KdV3
equation

ηt + ηx + α
3

2
ηηx + β

1

6
η3x − α2 3

8
η2ηx

+αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+ β2 19

360
η5x

+α3 3

16
η3ηx + α2β

(
19

32
η3x +

23

16
ηηxη2x +

5

16
η2η3x

)
+αβ2

(
317

288
η2xη3x +

1079

1440
ηxη4x +

19

80
ηη5x

)
+β3 55

3024
η7x = 0. (3)

Equations (1)–(3) are valid in the fixed reference frame.
Mathematicians prefer simpler versions of KdV obtained
by a transformation to a frame moving with a natural
velocity (equal to 1 in dimensionless coordinates or

√
gh

in dimension coordinates). For instance, in the case of
β = α, the following change of variables:

x̂ =

√
3

2
(x− t), t̂ =

1

4

√
3

2
αt and u = η

transforms (1) into
ut̂ + 6uux̂ + u3x̂ = 0,

commonly used in mathematical papers.
The paper is organized as follows. In Sect. 2 we

give a short overview of analytic solutions to KdV. In
Sect. 3 the analytic solutions to KdV2, which have the
same functional forms as the corresponding KdV solu-
tions, are presented. We show that for KdV2 exact
multi-soliton solutions do not exist. In Sect. 4 we show
that there are no analytic solutions for any higher order
KdV equations.

2. KdV and its solutions

The KdV equation possesses many miraculous prop-
erties. The most striking is the existence of an infinite
number of integral invariants which correspond to con-
servation laws. There exist several kinds of analytic solu-
tions to KdV: single soliton solutions, periodic (cnoidal)
solutions, periodic “superposition” solutions, and multi-
soliton solutions. Two first kinds of these solutions
can be obtained by direct integration (see, e.g., mono-
graphs [2, 3]). Below we show another method of obtain-
ing single soliton and periodic solutions, applicable not
only to KdV but also to KdV2. This method allows us
to compare solutions of the same kind for equations of a
different order.

2.1. Single soliton solutions

Assume solutions of the KdV equation in the form
η(x, t) = Asech2[B(x− vt)] = Asech2(By), (4)

where y = x − vt. Substitution of (4) into KdV (see
Eq. (1)) gives

−1

3
AB tanh(By)sech4(By) [G0 +G2 cosh(2By)] = 0.

(5)
Equation (5) is valid for any argument only when simul-
taneously

G0 = 3− 3v + 9αA− 10βB2 = 0, (6)
and

G2 = 3− 3v + 2βB2 = 0. (7)
This gives immediately

B =

√
3α

4β
A, v = 1 +

α

2
A (8)

and the solution coincides with that obtained by direct
integration of (1).
Remark 1 It is clear from (8) that solutions exist for

arbitrary parameters α, β. Since KdV imposes only two
constraints on three coefficients A,B, v, there exists a
one-parameter family of solutions. Usually, the ampli-
tude A can be considered arbitrary, within the range in
which α stays small.

2.2. Periodic (cnoidal) solutions

In this case, the solution can be postulated in the form
of the cnoidal wave

η(x, t)=Acn2(B(x− vt),m) +D=Acn2(By,m) +D.

(9)
The constant D is necessary in order to assure that
the mean surface elevation coincides with undisturbed
water level.

Equivalently, instead of the Jacobi elliptic cn func-
tion, dn or sn Jacobi elliptic functions can be used.
Then, substitution of (9) into KdV yields equation
analogous to (5):

1

3
ABcn sn dn

(
G0 +G2cn

2
)
= 0. (10)

In (10), the arguments (B(x − vt),m) of the Jacobi el-
liptic functions are omitted for abbreviation. So, there
must be

G0 = 4βB2 − 8βB2m− 9αD + 6v − 6 = 0, (11)
and

G2 = 12βB2m− 9αA = 0. (12)
Equation G2 = 0 implies

B =

√
3α

4β

A

m
. (13)

Volume conservation condition determines

D = −A
m

[
E(m)

K(m)
+m− 1

]
. (14)
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In (14), E(m) and K(m) are the complete elliptic
integral and the complete elliptic integral of the first
kind, respectively. Then from G0 = 0 one has

v = 1 +
αA

2m

[
2−m− 3

E(m)

K(m)

]
. (15)

Remark 2 In the case of cnoidal solutions, KdV with
volume conservation condition supply three constraints
on five parameters A,B, v,D,m. Then there is some
freedom in allowable ranges of the coefficients. Usually,
the amplitude A is considered arbitrary, until there is
no contradiction with the condition that α is small. In
principle, the elliptic parameter can take values from the
whole interval m ∈ [0, 1].

2.3. Periodic “superposition” solutions

Assume solutions to KdV in the form

η±(y) =
A

2

[
dn2(By,m)±

√
mcn(By,m)dn(By,m)

]
+D.

(16)
Coefficient D is necessary in order to maintain, for ar-
bitrary m, the same volume for a wave’s elevations and
depressions with respect to the undisturbed water level.
This form of the solution (without D term) has been pro-
posed only recently in [8].

Insertion of (16) into (1) gives equation analogous
to (5), which after some simplifications takes the form
F0 + F2cn

2 + F11cn dn = 0. Then there are three condi-
tions on the solution

F0 = 9αA(1−m) + 2βB2(5m− 1)

+18αD + 12(1− v) = 0, (17)

F2 = 9αAm− 12βB2m = 0, (18)

F11 = 9αA
√
m− 12βB2

√
m = 0. (19)

Equations (18) and (19) are equivalent and yield
the same

B =

√
3α

4β
A. (20)

Then volume conservation condition together with (17)
determine D and v as functions of A and m:

D = −A
2

E(m)

K(m)
and v = 1 +

αA

8

[
5−m− 6

E(m)

K(m)

]
.

(21)
The solutions η± (16) are different than those given

by (9). However, Remark 2 applies to these solutions,
as well.

2.4. Multi-soliton solutions

The existence of multi-soliton solutions is one of the
most exciting properties of the KdV equation. Zabusky
and Kruskal [9] noticed the first indication of that prop-
erty in their famous numerical experiment. The paper [9]
inspired intensive studies which resulted in the develop-
ment of a general method, by Gardner et al. [10], called
inverse scattering transform (IST). The IST allows us

to construct the whole family of multi-soliton solutions.
There exist also other methods for construction of multi-
soliton solutions (e.g., the Bäcklund transformations, the
Lax pairs, the Hirota direct method). During their mo-
tion solitons having different velocities collide and regain
their shapes after reseparation. KdV equation permits
for the existence of solitons with different amplitudes
(and therefore different velocities). Therefore analytic
multi-soliton solutions can exist.

3. Analytic solutions to KdV2

In this section, we discuss the solutions to KdV2
Eq. (2) derived by us in the same way as solutions to
KdV (1) in Sect. 2. In Refs. [11–15] we have shown that
for the KdV2 equation there exist analytic solutions of
the same forms as solutions to KdV (4), (9) and (16)
but with different coefficients A,B,D, v. Here, we give
a brief overview of these results, the full presentation of
which is contained in [11–15].

3.1. Single soliton solution to KdV2

Substitution of the postulated form of the solution (4)
into (2) leads (after some simplifications) to the equa-
tion analogous to (5) but containing C0+C2 sech

2(By)+
C4 sech

4(By) in the square bracket. This implies three
linearly independent equations for three unknowns coef-
ficients A,B, v:

(1− v) + 2

3
B2β +

38

45
B4β2 = 0, (22)

3Aα

4
−B2β +

11

4
AαB2β − 19

3
B4β2 = 0, (23)

−
(
1

8

)
(Aα)2 − 43

12
AαB2β +

19

3
B4β2 = 0. (24)

From (24), denoting z = βB2

αA one has
19

3
z2 − 43

12
z − 1

8
= 0, (25)

with roots

z1 =
43−

√
2305

152
≈ −0.033 < 0 (26)

and

z2 =
43 +

√
2305

152
≈ 0.599 > 0. (27)

Since for soliton solution A > 0, only z = z2 has physical
relevance (B2 > 0). In this case (see [11, 15]), all three
coefficients of the solution are fixed by the coefficients of
the KdV2 equation α, β:

A ≈ 0.242399

α
> 0, B ≈

√
0.145137

β
,

v ≈ 1.11455. (28)
The result (28) means that contrary to the KdV
case, for KdV2 exists the unique soliton solution (4)
with coefficients A,B, v determined by the equation
parameters (α, β).
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3.2. Periodic cnoidal solutions to KdV2

Substitution of the postulated form of the solution (9)
into (2) leads, similarly as in the soliton case discussed in
Sect. 3.1, to three linearly independent equations for four
unknowns coefficients A,B,D, v which have to be sup-
plemented by volume conservation condition. The last
one gives the relation D = − A

m

[
E(m)
K(m)

+ m − 1
]
, analo-

gous to that in (21). Substitution z = B2β
Aα

m transforms
one of the equations into (25). In this case, however,
both positive and negative z roots (26) can be relevant.
For both z-roots the explicit formulae for A,B,D, v are
obtained as functions of α, β and the elliptic parameter
m. Although from mathematical viewpoint all values of
m ∈ [0, 1] are admissible, the definition of small param-
eter α requires that the amplitude coefficient A cannot
be much greater than one (in scaled coordinates). This
requirement puts limits on the physically relevant values
of the elliptic parameter m.

For the case z = z2, physically reasonable values of A
occur only in a narrow interval of m close to 1 (remem-
ber that when m → 1 the space period of cnoidal wave
tends to infinity and the solution tends to the soliton so-
lution). These solutions are “normal” cnoidal waves with
the crests up and the troughs down, slightly different
from cnoidal KdV solutions.

For the case z = z1, however, the cnoidal KdV2 so-
lutions exhibit a new feature. B is real for negative A.
This fact means that the solutions are ‘inverted cnoidal
waves, with the crests down and the troughs up. The rea-
sonable values of |A| occur only for small m ∈ [0,≈ 0.2).
Therefore shapes of such waves are not much differ-
ent from the usual cosine waves. For more details,
we refer to [12, 15].

3.3. Periodic “superposition” solutions to KdV2

In this case, the general procedure for obtaining the
solutions of KdV2 equation is analogous to that for the
KdV case, described in Sect. 2.3. Insertion of η± into
the KdV2 Eq. (2) supplies now the equation of the form
(arguments (By,m) omitted)

F0+F2cn
2+F4cn

4+F11cn dn+F31cn
3dn = 0. (29)

It appears, however, that only three of equations Fi = 0
are linearly independent and with volume conservation
condition constitute four equations for unknown coeffi-
cients of solutions. Substitution z = B2β

Aα
transforms one

of these equations into (25). Then, similarly as in the case
of cnoidal solutions, two cases occur, when z = z1 and
z = z2. Finally, the “superposition” solutions to KdV2
are qualitatively similar to cnoidal solutions, but with
slightly different amplitudes, velocities and wavelengths.
For more details, we refer to [13–15].

3.4. Nonexistence of multi-soliton solutions to KdV2

The given KdV2 equation (given values of α, β param-
eters) determines the unique single soliton solution (pre-
sented in Sect. 3.1). This fact means that for KdV2 there

is no room for solitons moving with different velocities
(and amplitudes). Therefore, multi-soliton solutions to
KdV2 cannot exist.

4. Nonexistence of analytic solutions to KdV3

Searching for single soliton solutions we substitute the
postulated form of the solution (4) into KdV3 (3). The
result can be transformed into the equation

C0 + C2 cosh
2(B(x− vt)) + C4 cosh

4(B(x− vt))

+C6 cosh
6(B(x− vt)) = 0, (30)

where all Ci are functions of A,B, v. Equation (30) im-
plies four conditions C0 = C2 = C4 = C6 = 0. The
explicit form of these conditions is the following:

C0 = 9α3A3 − 708α2A2βB2 + 12224αAβ2B4

−17600β3B6 = 0, (31)

C2 = 9α2A2
(
25βB2−1

)
−2αAβB2

(
2714βB2+129

)
+8β2B4

(
1100βB2 + 57

)
= 0, (32)

C4 = 3αA
(
334β2B4 + 55βB2 + 15

)
−20βB2

(
110β2B4 + 19βB2 + 3

)
= 0, (33)

C6 = 1100β3B6 + 798β2B4 + 630βB2

−945v + 945 = 0. (34)
Equations (31)–(33) are linearly independent with two

unknowns A,B. Since the number of equations exceeds
the number of unknowns, they appear to be contradic-
tory. Therefore, single soliton solutions of the form (4)
to KdV3 do not exist.

Proceeding in the analogous way with search for
cnoidal solutions (9) one reaches the similar structure of
four conditions C0 = C2 = C4 = C6 = 0. However, vol-
ume conservation condition supplies the fifth equation.
In this case, there are four unknowns A,B, v and D.
Again, similarly as in the previous case, the five equations
for the unknown coefficients appear to be contradictory.

Qualitatively the same contradiction of equations is
obtained for coefficients of “superposition” solutions to
KdV3. In this case, the number of linerly independent
equations exceeds the number of unknowns, as well.
Conclusion: For the KdV3 equation single soliton

solutions of the form (1), cnoidal solutions of the
form (9) and “superposition” solutions of the form (16)
do not exist.

5. The fifth order KdV equation

The fifth order KdV equation was derived in [16] for
capilary-gravity surface waves. In scaled dimensionless
coordinates coordinates it has the following form:

ηt + ηx +
3

2
αηηx + βτ1η3x + β2τ2η5x = 0, (35)
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where

τ1 =
1− 3τ

6
and τ2 =

19− 30τ − 45τ2

360
. (36)

In Eq. (36), τ = T
%gh2 is the bond number, and T is the

surface tension coefficient. It is known, see, e.g., [17–19],
that when τ > 1

3 Eq. (35) has the soliton solution of the
form

η(x, t) = Asech4[B(x− vt)]. (37)
It is worth to show an example of derivation of the

solution (37). Equation (35), after variable change y =
x− vt, becomes ODE. It can be integrated to the form

(1− v)η + 3

4
ηηy + βτ1η2y + β2τ2η4y = 0. (38)

The constant on the rhs has to be zero since
lim

y→±∞
η = 0.

Insertion of the postulated solution (37) into (38) yields
C0 + C2 sech

2(By) + sech4(By) = 0, (39)
which supplies three conditions Ci = 0 to be satisfied
simultaneously. So, we have

C0 = 4− 4v + 64B2τ1β + 1024B4τ2β
2 = 0, (40)

C2 = −80B2τ1β − 4160B4τ2β
2 = 0, (41)

C4 = 3Aα+ 3360B4τ2β
2 = 0. (42)

Solving the set (40)–(42) one obtains

A = − 700(1− 3τ)2

169α (19− 30τ − 45τ2)
, (43)

B =

√
− 15(1− 3τ)

13β (19− 30τ − 45τ2)
, (44)

v =
2851− 2910τ − 10845τ2

169 (19− 30τ − 45τ2)
. (45)

The coefficient B is real when τ ∈
[
1
3
,
√
120−5
15

≈ 0.397
]
.

Let us show an example of this solution for α = 0.2,
β = 0.15 and τ = 0.36. Come back to dimension vari-
ables for water wave case. For water T ≈ 72mN

m
. So, in

this case h =
√

T
%gτ
≈ 0.0045 m. The soliton amplitude

is αh ≈ 0.0009 m and x unit corresponds to 0.0117 m.
Indeed, it is capillary-gravity soliton on the surface of a
thin water layer.

Figure 1 displays the motion of single soliton solution
(37) according to the fifth order KdV Eq. (35).

In the case of KdV2 equation besides single soliton so-
lution of the form ∼ sech2[B(x−vt)] there exist periodic
cnoidal solutions ∼ cn2[B(x − vt),m. In analogy to the
case of the KdV2 we can search for cnoidal periodic so-
lution in the form
η(x, t)=Acn4[B(x− vt),m]+D=Acn4[By,m]+D. (46)
Insertion of (46) into (35) supplies equation analogous
to (30):
C0 + C2cn

2[By,m] + C4cn
4[By,m] + C6cn

6[By,m] = 0.

(47)

Fig. 1. Profiles of the soliton (37) for t = 0, 3, 4, 6
when α = 0.2, β = 0.15 and τ = 0.36.

In order for (46) to be the solution of Eq. (35) all Ci
coefficients must be zero

C0 = 24βB2
(
− 20βB2τ2(2m

2 − 3m+ 1)

+τ1(1−m)
)
= 0, (48)

C2 = β2B4τ2(6784m
2 − 6784m+ 1024)

+βB2τ1(128m− 64)3αD − 4v + 4 = 0, (49)

C4 = −120βB2m
(
52βB2(2m− 1)τ2 + τ1

)
, (50)

C6 = 3αA+ 6720β2B4m2τ2. (51)
From (48) nonzero root of B2 is

B2 =
τ1

20βτ2(1− 2m)
= 3

(1− 3τ)

β(1− 2m)(19− 30τ − 45τ2)
,

(52)
whereas from (50) one has nonzero root

B2 =
τ1

52βτ2(1− 2m)
=

15

13

(1− 3τ)

β(1− 2m)(19− 30τ − 45τ2)
.

(53)
This is an obvious contradiction. Therefore Eqs. (48)–
(51) cannot be satisfied simultaneously. So, the fifth or-
der KdV Eq. (35) does not possess cnoidal solution in the
form (46).

Assuming periodic solution in the form
η(x, t) = Acn2[B(x− vt)] +D, (54)

and proceeding as above we obtain that conditions
analogous to (48)–(51) are contradictory, as well.
Therefore, the function of the form (54) cannot be
a solution to Eq. (35).

6. Conclusions

The main results of these studies can be summarized
as follows.

• The extended KdV (KdV2) equation does not pos-
sess multi-soliton solutions. It possesses three
kinds of analytic solutions of the same functional
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forms as KdV solutions, namely single soliton,
cnoidal, and ‘superposition solutions. However,
multi-soliton solutions for KdV2 do not exist.

• For KdV3 Eq. (3), analytic solutions of the same
functional forms as KdV, and KdV2 solutions do
not exist.

• The fifth order KdV Eq. (35) has an analytic so-
lution in the form of a hyperbolic sech4 function.
However, periodic solutions of (35) in the form of
the Jacobi elliptic function cn2 or cn4 do not exist.
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