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Dual Approach to the Spectral Form Factor
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We study here the short-time behavior of the spectral form factor for chain-like many-body systems of ar-
bitrary length N , an important tool to distinguish chaotic and integrable dynamics. We found in the past that
while the long-time behavior of the spectral form factor is universal and follows predictions by Random Matrix
Theory, it becomes highly system dependent for short times, even for large N in the disorder-free case. Now, our
aim is to study to which extend this observation persists if a nonzero disorder is considered.
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1. Introduction

The study of many-body systems is intimately con-
nected with the need to deal with a large dimension of
Hilbert space. Usually this dimension grows exponen-
tially with the number of particles. A recently developed
duality relation [1] overcomes this obstacle in the case of
the short times, without the need for any further approx-
imations for periodically kicked systems. In this context
a dual operator, that is nonunitary in general, is derived.
While the time evolution ÛN evolves the system from
a given time step to the next, the dual operator ŴT

evolves a given particle of the system for all T time steps
to the neighboring particle. The main gain achieved by
introducing ŴT is that spectral properties, i.e., the corre-
lations of the eigenphases of the one-time-step evolution
operator can be characterized analytically in the regime
of small T and arbitrary values of N . A quantity con-
viently used also for single-particle systems is the spectral
form factor [2, 3]

KN (T ) =
1

2N
∣∣Tr ÛTN

∣∣2. (1)

In this article we will study the kicked Ising Chain [4, 5]
as an example of an interacting many-body system. In
Ref. [5] consistency of the long time behavior of the spec-
tral form factor was confirmed for the same system,
with results from Random Matrix Theory (RMT) [6, 7].
By long times, we mean times beyond the Ehrenfest
time [8] that scales logarithmically with ~, and thus,
becomes infinite in the semiclassical limit. The short-
time behavior in [5] was analyzed numerically. We de-
scribed the short-time behavior of the spectral form
factor analytically [1]. These studies were performed
for a disorder-free system, i.e., the coupling between dif-
ferent spins and the on-site magnetic field to which the
spins are exposed, were position independent. In con-
trast to the long-time behavior of the spectral form factor
that is determined by universal RMT results depending
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only on T and the Heisenberg time (the time conjugate
to the mean level spacing via the Heisenberg uncertainty
principal) the short-time behavior of the form factor is
determined by the actual values of the system parameters
(the couplings and the magnetic fields).

A further interesting property of the dual operator is
related to its nonunitarity: while this operator is nonuni-
tary in general, it can be unitary for a special choice of
the couplings between the spins and the on-site magnetic
field [1]. In this case, usually referred to as self-dual [9],
the system has special properties: the spectral form fac-
tor in the presence of disorder in the z-component of
the magnetic field is obtained in accordance with RMT in
the thermodynamic limit N � 1 also for arbitrarily short
times [9]. Furthermore, in Ref. [10] the system showed a
linear increase of the entanglement entropy up to a sat-
uration value. These two properties lead to the charac-
terization of that system as maximally chaotic. Finally,
this system shows special spatio-temporal structures of
correlation functions [11]. In Ref. [12] we extended the
analysis of Ref. [9] to parameter values close to but dif-
ferent from the self-dual situation, where we identified a
transition to a localized behavior.

In this paper we want to follow a different route. Using
the dual operator again we aim at analyzing the proper-
ties, especially the N -dependence of the spectral form
factor, under the assumption of weak disorder in a nu-
merical and analytical way. The major motivation for
that is to understand to what extend the disorder helps
to recover the Random Matrix Theory results also away
from the self-dual situation.

The outline of this article is as follows: In Sect. 2
we introduce the Kicked Ising Chain model. In Sect. 3,
we recapitulate the duality relation and show how it can
be extended to disorder in the couplings between adja-
cent spins. Under the assumption that the couplings be-
tween the different spins of the chain vary only slightly,
we obtain an analytical expression for Tr ÛTN for T = 1.
This allows us to discuss the N -dependence of the spec-
tral form factor in Sect. 4. In this context we consider
our analytical approach developed in the Section before
and also compute the form factor numerically. Finally,
we conclude in Sect. 5.
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2. Kicked Ising Chain

Consider a chain of N spin-1/2-particles with the fol-
lowing Hamiltonian

Ĥ(t) = ĤI + ĤK

∞∑
τ=−∞

δ(t− a τ). (2)

The interaction part ĤI describes the next neighbour
Ising interaction

ĤI =

N∑
n=1

Jnσ
z
nσ

z
n+1, (3a)

and ĤK describes the kicking of a magnetic field

ĤK =

N∑
n=1

bn · σn, (3b)

where σn = (σxn, σ
y
n, σ

z
n) are the spin operators (here

Pauli matrices) for site n, and due to the boundary condi-
tion σN+1 = σ1. The coupling constant Jn and the mag-
netic field bn are, in general, site dependent, i.e., the sys-
tem is only translationally invariant if Jn = J as well as
bn = b for all sites n. The magnetic field can be chosen
as bn = (bn sin(ϕn), 0, bn cos(ϕn)) without loss of gener-
ality. The Hamiltonian is periodic in time with period a
as bn acts only at integer multiples of a. Thus, the Flo-
quet operator (time evolution operator for one period)
can be defined [2]

Û = T exp

(
− i

a∫
0

Ĥ(t)dt

)
= ÛI ÛK , (4)

ÛI = exp(− iaĤI), ÛK = exp(− iĤK). (5)
with the time ordering operator T . Here we can see that
varying the time between kicks a effctively leads to
a rescaling of the coupling parameters Jn. The system
becomes integrable for ϕ = 0 as the Hamiltonian will be
diagonal in the base of σz and for ϕ = π

2 . In the lat-
ter case the system can be mapped onto a chain of non-
interacting spinless fermions via Jordan-Wigner transfor-
mation [13].

3. Duality relation

3.1. Recapitualtion of the disorderfree case

We are interested in the trace of the time evolution
operator for T time steps [1], namely:

Tr ÛTN . (6)
A change of a should not be confused with a change of T .
Varying a changes the time the system evolved, but not
the number of kicks and actions of ÛI involved. The lat-
ter is only changed by T . Henceforth we assume a = 1.
Due to the large dimension 2N × 2N of the operator Û
we replace it by, in general, the non-unitary dual oper-
ator ŴT of dimension 2T × 2T . This operator is con-
structed in such a way that its N -th power fullfils:

Tr ÛTN = Tr ŴN
T . (7)

This is because Tr ÛTN resembles the partition function of
a two dimensional Ising model on a N × T lattice with

Fig. 1. The lattice of N × T dimension with cou-
pling J in N -direction and coupling K in T -direction.
The dashed line indicates the angle bisection.

the coupling J of the original chain in the N -direction
and the in general complex coupling K (see below)
in T -direction (c.f. Fig. 1). The partition function re-
mains the same if we reflect the N×T lattice at its angle
bisection. In this way we can think of a dual operator
ŴT that fullfils (7) and has the appropriate dimension.
The complex coupling constant K then leads to the non-
unitarity of the dual operator.

The quantity ŴT allows to characeterize especially
the trace of the time evolution operator for an arbitrary
number of particles for short times. It is given by
a product of an Ising and a kick part

ŴT = A ÛI(K) ÛK(b̃, ϕ̃). (8)
The operators ÛI and ÛK have the same form as in
Eq. (4), however the definition of parameters is different
as in Eq. (4). Here, parameters are determined by

e−4 iK = 1− 1

x2
with x = sin(b) sin(ϕ), (9)

and

e−4 iJ = 1− 1

x̃2
with x̃ = sin(b̃) sin(ϕ̃) (10)

with the additional condition
tan(b) cos(ϕ) = tan(b̃) cos(ϕ̃). (11)

The constant A is given by
A = eT (η−η̃) (12)

with η and η̃ determined by
e4η = x2(x2 − 1), e4η̃ = x̃2(x̃2 − 1). (13)

3.2. Extension to disorder

We will restrict our analysis here to site-independent
magnetic fields b, only the couplings Jn are site-
dependent. In the case of disorder, i.e., inhomogenous
couplings Jn, the N -th power of ŴT is replaced by
the following product

ŴN
T = BN ÛI(K) ÛK(b̃N , ϕ̃N ) . . . ÛI(K) ÛK(b̃1, ϕ̃1).

(14)
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The factors ÛI(K) have the same form as in Eq. (8).
The arguments b̃N and ϕ̃N are now given by

e−4 iJn = 1− 1

x̃2n
with x̃n = sin(b̃n) sin(ϕ̃n). (15)

The factor B is given by

B = exp

(
T

N∑
n=1

(η − η̃n)/N

)
. (16)

It is easy to check that the results given here turn into
the ones without disorder for Jn = J .

3.3. Approximation for T = 1

Under the condition that the magnetic field acts ho-
mogeneously on the chain and the coupling parameters
vary only slightly, i.e.,

Jn = J (0) + J (1)
n , (17)

we can express the dual operator for T = 1 by second
order perturbation in J (1)

n . The same can be done with
the dual parameters:

b̃n = b̃(0) + b̃(1)n ,

ϕ̃n = ϕ̃(0) + ϕ̃(1)
n ,

η̃n = η̃(0) + η̃(1)n . (18)

Their values are determined by the J (1)
n via Eqs. (10)

and (13). The prefactor from Eq. (16) evaluates to

B = eN(η−η̃(0))

1−
N∑
n=1

η(1)n +
1

2

(
N∑
n=1

η(1)n

)2


+O
(

(η(1)n )3
)
. (19)

Note that for T = 1 the Ising part will be a constant
factor

ÛI = e− iNK . (20)
The kick part is given by

ÛK =

N∏
n=1

e− i b̃n·σ1 =

N∏
n=1

cos b̃n + i sin b̃n

(
sin(ϕ̃n)σx1 + cos(ϕ̃n)σz1

)
, (21)

where the left hand order of the product must not be
violated because the one particle operators e− i b̃n·σ1 do
not commute in general. It can be expanded into second
order by starting with the one particle operators

e− i b̃n·σ1 = α+ βn +
1

2
γn +O

(
(J (1)
n )3

)
(22)

with
α = cos b̃(0) − i sin b̃(0)G

(
ϕ̃(0)

)
,

βn = − i ϕ̃(1)
n sin b̃(0)G

(
ϕ̃(0) +

π

2

)
− i b̃(1)n cos b̃(0)G

(
ϕ̃(0)

)
− b̃(1)n sin b̃(0),

γn = −
(
b̃(1)n

)2
cos b̃(0)

−2i b̃(1)n ϕ̃(1)
n cos b̃(0)G

(
ϕ̃(0) +

π

2

)
+i
[ (
b̃(1)n

)2
+
(
ϕ̃1)
n

)2 ]
sin b̃(0)G

(
ϕ̃(0)

)
, (23)

where the abbreviation
G
(
ϕ̃(0)

)
= sin ϕ̃(0) σx1 + cos(ϕ̃(0))σz1 (24)

is used. The whole product is then up to second order
N∏
n=1

exp (− ibn · σ1) =

N∏
n=1

α+ βn +
1

2
γn =

αN +

N∑
n=1

αN−nβnα
n−1 +

1

2

N∑
n=1

αN−nγnα
n−1

+

N−1∑
n=1

N−1∑
k=n

(
αN−1−kβk+1 α

k−n
)
βn α

n−1

+O
((

J (1)
n

)3)
(25)

Going onwards we will omit the last term as in
practice we want to choose a distribution of J (1)

n which
is symmetric around zero. Therefore, the sum of terms
J
(1)
n J

(1)
m with n 6= m vanishes (and the dual parameters

are directly proportional to J (1)
n ). The desired trace of

the Floquet operator is now given by

Tr ŴN
1 = BN e− iNK

(
TrαN +

N∑
n=1

Tr (αN−nβnα
n−1)

+
1

2

N∑
n=1

TrαN−nγnα
n−1
)

+O
((

J (1)
n

)3)
. (26)

The eigenvalues of the unperturbed (i.e., free from dis-
order) one particle operators are

λ̃± = cos b̃(0) ± i sin b̃(0). (27)
The trace can be expressed in terms of them after diag-
onalization of α

Tr ŴN
1 = BN e− iNK

[
λ̃N+ + λ̃N− + i

N∑
n=1

b̃(1)n (λ̃N+ − λ̃N− )

−1

2

N∑
n=1

(
b̃(1)n

)2 (
λ̃N+ + λ̃N−

)
+i
(
ϕ̃(1)
n

)2
sin b̃(0)

(
λ̃N−1+ − λ̃N−1−

)]
. (28)

4. Spectral form factor

The spectral form factor as the Fourier transform of
the two-point correlation function contains information
about the correlations of the eigenphases (eigenvalues of
the Floquet operator) and can therefore act as tool to
diagnose quantum chaos. It can be written as
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K(T ) =
1

2N

∣∣∣Tr ÛTN

∣∣∣2 =
1

2N

∣∣∣Tr ŴN
T

∣∣∣2, (29)

where we already made use of the duality relation (7).
We want to compare our results with the spectral form
factor of the appropriate RMT ensemble, the circular or-
thogonal ensemble (COE):

KCOE(T ) =

 |T |
(

2− ln
(
1 + 2|T |

))
for |T | ≤ 1

2− |T | ln
(

2|T |+1
2|T |−1

)
for |T | > 1

.

(30)

We want to analyze the behavior up to the Heisenberg
time TH = 2N . Therefore, a rescaling of the RMT form
factor is necessary [5]

KCOE(T )→ KCOE

(
T

2N

)
. (31)

For the disorder average we will choose our set of J (1)
n

according to a uniform distribution in [−∆J,∆J ] with
∆J being the disorder strength. First we will look at
a small disorder where our approximation (28) is valid.

Fig. 2. Logarithmic plot of the spectral form factor as
a function of N within the chaotic regime J(0) = 0.7,
b = 0.9

√
2, ϕ = π

4
. The disordered case (blue — nu-

meric, black — analytic approximation) with the disor-
dered free case (orange) and the RMT result (red) for
∆J = 0.2.

Fig. 3. Logarithmic plot of the spectral form factor as
a function of N within the chaotic regime J(0) = 0.7,
b = 0.9

√
2, ϕ = π

4
. The disordered case (blue), the

disordered free case (orange) and the RMT result (red)
for ∆J = 1.

In Fig. 2 we compare the RMT result with the disor-
derfree case and the disordered case in the weak dis-
order regime, where our perturbative approach is valid.
We compare our analytical result with the one obtained
by an exact numerical computation of the spectral form
factor based on Eq. (14).

For larger N we can see a good agreement between
the numerical results and the approximation. For smaller
particle numbers the fuctuations of the J (1)

n cause some
deviations. The disordered case lies closely to the disor-
derfree case.

For larger disorder strength ∆J that lies beyond our
analytical treatment, we can observe the effect that
the disordered spectral form factor approaches the RMT
results, c.f. Fig. 3.

5. Conclusion

We considered here the kicked Ising chain model [4],
a prototype of an interacting many-body system, where
we included disorder in the coupling between the adjacent
spins, i.e., site-dependent couplings between the spins.
Such a system is the more interesting as it combines in-
teractions and disorder, and thus it yields the basis for
the phenomenon of many-body localization, attracting
huge interest in the recent years [14–17]. For such a sys-
tem we analyzed the spectral form factor — a well es-
tablished measure of quantum chaos [2, 3], i.e., a mea-
sure that yields a unique trace of classically integrable
or chaotic dynamics in the discrete quantum spectrum.
Therefore, we first extended the duality relation intro-
duced in [1] for a disorder-free system to disorder in
the couplings Jn. This allowed us to derive in the case
of weak disorder an analytical expression for the trace
of the dual operator, and thereby for the spectral form
factor for one time step. In order to check our results the
comparison with independent numerical computations
was done and a very reasonable agreement was found.
Furthermore we contrast our results with the predictions
by RMT and observed that an increasing amount of dis-
order leads to a form factor approaching the one expected
from RMT even for that short times. We see our ap-
proach as complementary to the ones in Refs. [9] and [12]
that study the same quantity in the self-dual situation
and in its vicinity, respectively.

Our analytical approach is restricted to T = 1.
It would be very interesting to extend it to larger times
as well. We hope to confirm the increasing agreement
in dependence of time with the Random Matrix Theory
results, which we observed numerically in that way. An-
other research line would be to consider different quan-
tities considering again the approximation of weak dis-
order. Examples are the entanglement entropy or spin-
spin correlation functions. Based on Refs. [10, 11] that
study the self-dual situation it can be already expected
that they show an interesting behavior in the short-time
regime of the order of the duration between a few kicks.
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