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Fock Space Localization of Many-Body States
in the Tilted Bose–Hubbard Model
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We analyze the eigenstates’ Fock space structure in the tilted Bose–Hubbard Hamiltonian. Fock space lo-
calization is quantified in terms of finite-size generalized fractal dimensions. This approach allows us to monitor
the parametric evolution of localization across avoided crossings in the energy spectrum. We identify a manifold
of strongly localized eigenstates, both in Fock and configuration space, which persists in regimes where all system
parameters (hopping, interaction, and tilt strengths) are comparable. For a fixed number of bosons, the localization
properties of that manifold are independent of the lattice size. The influence of avoided crossings on the structure
of the localized manifold is discussed in detail.
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1. Introduction

One of the challenging problems in modern quan-
tum mechanics is the understanding and control of
the dynamics of many-particle systems. When increas-
ing the number of particles, the system’s complexity in-
creases, not only due to the exponential growth of the
underlying Hilbert space, but most significantly because
of the intricate interplay between many-body interactions
and many-particle interference (see, e.g., Refs. [1–4] and
references therein). Such complexity may manifest itself,
e.g., in the emergence of spectral chaos [5–9] or in Hilbert
space structure of eigenstates, which can exhibit unusual
statistical properties [10–15].

Given the general convoluted nature of the time evo-
lution of many-body systems, it is always of interest
to investigate the possibility of engineering quantum
states with potentially controllable dynamical proper-
ties [16, 17]. The desired dynamical stability may fol-
low from the robustness of the state structure against
perturbations in the Hamiltonian parameters. Remark-
ably, such an example was found recently in the tilted
Bose–Hubbard model [18–20], for which a set of states
that are strongly localized in Fock and real space, and
well embedded in the energy spectrum, exhibited a signif-
icant stability to dynamical changes in the tilt strength.

Motivated by the latter results, we study in detail
the eigenstate structure of the tilted Bose–Hubbard
Hamiltonian and its correlation with the energy spec-
trum. In order to analyze localization in Fock space,
we make use of the quantifiers employed in multifrac-
tal analysis, namely the finite-size generalized fractal
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dimensions, which have proven to be very useful to de-
scribe the complexity of many-body states in Hilbert
space, in particular for interacting bosons [14, 15, 21].
In Sect. 2, we describe the model and formalism em-
ployed. The relation between energy level repulsion and
localization in the space is briefly presented in Sect. 3.
In Sect. 4, we identify a manifold of eigenstates with spe-
cial localization properties and investigate its dependence
upon the system parameters. Finally, we discuss our re-
sults in the context of earlier studies.

2. Model and formalism

The Bose–Hubbard Hamiltonian [22, 23] is
an archetypical many-particle model that can be
experimentally implemented with ultracold atoms
in optical lattices. Nowadays, the optical lattices
provide a powerful playground to explore the physics
of interacting many-body quantum systems (see, e.g.,
Refs. [24–30] and references therein). In particular,
the so-called tilted Bose–Hubbard model is a paradig-
matic system for investigating theoretically and
experimentally the phenomenology of Bloch oscillations
(see, e.g., Refs. [31–35]).

The tilted Bose–Hubbard model describes interacting
bosons hopping in a lattice with a constant energy dif-
ference between neighbouring sites, as depicted in Fig. 1.
The corresponding Hamiltonian can be written as

H = −J
∑
〈l,j〉

b̂†l b̂j +
U

2

∑
l

n̂l (n̂l − 1) + F
∑
l

l̃ n̂l, (1)

in terms of the on-site bosonic creation (b̂†l ), annihilation
(b̂l), and number (n̂l) operators. The one-dimensional
lattice spans L sites and contains N bosons in the pres-
ence of hard wall boundary conditions (HWBC). Only
nearest neighbour hopping is allowed, and we con-
sider the case a of symmetric tilt around the centre of
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Fig. 1. Sketch of the tilted Bose–Hubbard model with
nearest-neighbour hopping energy J , on-site interaction
U and tilt strength F .

the lattice, hence l̃ ≡ l − (L + 1)/2. In the following,
we set the interaction strength U as the basic energy
scale of the system.

Our basis of choice in the Hilbert space, of size
N =

(
N+L−1

N

)
, will be given by the Fock states of the

on-site density operators, |n〉 ≡ |n1, n2, . . . , nL〉, since
they provide a direct description of the bosonic density
in real space.

In the Fock basis, the interaction and tilt terms of
Hamiltonian (1) are diagonal. Thus the eigenenergies of
the system depend linearly on F/U in the limit J/U = 0.
In this case, certain Fock states can be degenerate for
all tilt strengths†. Additionally, notable degeneracies be-
tween Fock states can occur at rational values of the ratio
F/U ‡, as shown in Fig. 2.

On the other hand, the hopping term in the Hamil-
tonian couples different Fock states and is responsible
for the off-diagonal elements in the matrix representa-
tion of H. For non-vanishing J/U , and finite F/U > 0,
all degeneracies in the spectrum are lifted, and the
parametric evolution of the energy spectrum versus
the tilt strength becomes populated by avoided crossings
(cf. Fig. 2).

For arbitrary values of J/U and F/U , the eigenstates
of the tilted Bose–Hubbard Hamiltonian (TBHH) will
have, in general, a non-trivial expansion in the Fock basis.
In order to characterize their structure, and in particular
their localization properties in Fock space, we make use
of the tools of multifractal formalism [14, 15, 36], given
a normalized eigenstate in the Fock basis,

|Ψ〉 =
∑
n

ψn |n〉 . (2)

†For example, all Fock states that exhibit mirror symmetry
about the middle of the lattice and that are related by a permuta-
tion of the on-site densities will have a common eigenenergy in the
absence of hopping.

‡If we consider the simplest case of all Fock states that differ
only in two on-site densities placed l sites apart, one can see that
degeneracies occur when (F/U)l = 1, 2, . . . , N − 1, where we have
assumed F/U > 0.

Fig. 2. Eigenenergies E/U versus F/U of the tilted
Bose–Hubbard Hamiltonian with L = N = 3 for
J/U = 0 (dashed black lines) and J/U = 0.15 (solid
orange lines). Vertical dotted lines mark the position of
real crossings for J/U = 0. For J/U 6= 0, a first order
avoided crossing at F/U = 2 and a second order avoided
crossing at F/U = 1 are highlighted by shaded areas,
and the corresponding dominant Fock states involved
in the crossings are indicated.

We define its q-moments, also known as generalized in-
verse participation ratios, as

Rq ≡
∑
n

|ψn|2q, q ∈ R, (3)

where different values of the exponent q probe the prop-
erties of different ranges of the state’s intensities |ψn|2.
The scaling of such moments with the dimensionality of
Hilbert space unveils the potentially extended, localized,
or multifractal character of the state |Ψ〉. Neverthe-
less, for finite N a useful quantification of the degree
of localization is provided by the quantities (so called
finite-size generalized fractal dimensions):

D̃q ≡
1

1− q
lnRq

lnN
. (4)

Among the D̃q, we may single out the cases q = 1, 2

and ∞. The dimension D̃1 is related to the Shan-
non information entropy of the distribution of intensi-
ties |ψn|2. The value of D̃2 follows from the standard
inverse participation ratio of the state, and for q = ∞
only the maximum value of the intensities is relevant,
D̃∞ = − logN maxn |ψn|2. The dimensions D̃q are al-
ways monotonically decreasing functions of q [37].

If a state covers Fock space homogeneously (i.e.,
|ψn|2 = N−1), the latter dimensions have the trivial
values D̃q = 1, for all q. In contradistinction, a state
localized on a single Fock state |n′〉 (i.e., ψn = δn,n′)
leads to D̃q = 0 for q > 0. A generic eigenstate of H
will exhibit values of D̃q between 0 and 1 for q > 0,
as shown in Fig. 3. There, one can see how the degree
of localization in Fock space is qualitatively reflected in
the values of D̃q.
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Fig. 3. (Left) Dimensions D̃q versus q in a finite
Hilbert space of size N = 1365. The four lines shown
correspond to a homogeneously extended state (blue),
a fully localized state (black) and two eigenstates of the
TBHH, the ground state (orange) and the 450th excited
state (green). The parameters of the Hamiltonian were
chosen to be L = 12, N = 4, J/U = 0.6, F/U = 0.5.
(Right) Illustration of the intensities of the correspond-
ing eigenstates in the Fock basis.

3. Eigenstate structure around avoided crossings

The level dynamics of the TBHH is strongly deter-
mined by avoided crossings, giving rise to spectral chaos
in the system [6, 7, 38]. Such avoided crossings play
a crucial role in the mixing of the Fock states, and hence
in the Hilbert space structure of the eigenstates.

The emergence of avoided crossings can be described
via a two-level approximation, in which two eigenstates
|Φ1,2〉 of the Hamiltonian H0(F/U) (including in our case
the interaction and tilt terms), whose energies ε1,2 are
degenerate for a certain (F/U)0, become coupled by the
hopping term V (J/U) (first term in Eq. (1)), which in-
duces a level repulsion around (F/U)0 and the charac-
teristic hyperbolic trajectories of the new eigenenergies
as functions of F/U . The minimum energy gap at the
avoided crossing is given by ∆E = 2 |〈Φ1|V |Φ2〉|. For the
simplest avoid crossing, between |Φ1〉 = |. . . , 0, N, 0, . . .〉
and |Φ2〉 = |. . . , 0, N − 1, 1, 0, . . .〉, one can straightfor-
wardly obtain ∆E = 2J

√
N , and the parametric

width of the crossing region can be estimated to be
∆F ' 4J

√
N [39].

In the two-level approach, the mixing of |Φ1,2〉 through
the avoided crossing can be cast as a rotation,
|Ψ1〉 = cos(θ/2) |Φ1〉 − sin(θ/2) |Φ2〉 , (5a)

|Ψ2〉 = sin(θ/2) |Φ1〉+ cos(θ/2) |Φ2〉 , (5b)
for 0 < θ < π, and where tan θ = 2 |〈Φ1|V |Φ2〉| /(ε1−ε2).
In our case, the angle θ simply parametrizes the change
of F/U through the crossing. Such a two-state treat-
ment is only justified for small J/U and cannot account
for the level repulsion due to the mixing of Fock states
which differ in more than one particle hopping (which we
refer to as higher order avoided crossings (cf. Fig. 2)).
In order to get a qualitative understanding of the ef-
fect imparted by the level repulsion on the parametric
evolution of the dimensions D̃q, going beyond the two-
level approximation, we will assume that the underly-
ing states involved in the crossing |Φ1,2〉 may already be

superpositions of Fock states, and that their mixing is
still roughly captured by Eqs. (5).

We consider two exemplary cases. First, let us assume

|Φ1〉 = |n〉 , (6a)

|Φ2〉 =
1√

1 + δ2
{|m〉+ δ |o〉} , δ ∈ R, (6b)

where |n〉, |m〉 and |o〉 denote orthogonal Fock states.
Making use of Eqs. (3)–(5), the dimensions D̃q in the
Fock basis for the eigenstates |Ψ1,2〉 can be straight-
forwardly calculated, and the corresponding evolution
through the avoided crossing is shown in the upper pan-
els of Fig. 4. At the centre of the avoided crossing
(i.e., θ = π/2), the eigenstates have the form

|Ψ1〉 =
1√
2

[
|n〉+

1√
1 + δ2

|m〉+
δ√

1 + δ2
|o〉
]
, (7a)

|Ψ2〉 =
1√
2

[
|n〉 − 1√

1 + δ2
|m〉 − δ√

1 + δ2
|o〉
]
. (7b)

As a consequence of the mixing, the states acquire more
non-zero Fock coefficients as compared to their asymp-
totic forms away from the crossing (Eqs. (6)); the states
become more extended in Fock space and correspond-
ingly the values of D̃q are enhanced when traversing
the crossing, as can be seen in Fig. 4.

If, instead, we consider the case

|Φ1〉 =
1√

2 + δ2
{|n〉 − |m〉+ δ |o〉} , δ ∈ R, (8a)

|Φ2〉 =
1√
2
{|n〉+ |m〉} , (8b)

one can check that the mixing induced by the avoided
crossing leads to an enhanced localization in Fock space,
as can be observed in the lower panels of Fig. 4.

This simple analysis can help us understand the para-
metric evolution of the dimensions D̃q and correlate it
with the occurrence of avoided crossings in the energy
spectrum. Furthermore, the appearance of a characteris-
tic form of the parameter dependence, such as observed
in Fig. 4, can be linked to a particular underlying Fock
structure of the states which undergo the avoided cross-
ing. We also emphasize that all D̃q for q > 0 exhibit
the same qualitative behaviour.

4. Manifold of localized eigenstates

In order to have a global picture of the influence of
the tilt on the eigenstate structure, we show in Fig. 5
the parametric evolution (as a function of F/U) of D̃1

for all eigenstates, correlated with the level dynamics,
for a system with L = N = 4 (N = 35) and J/U = 0.05.
The eigenenergies are given in terms of the energy density

ε ≡ E − Emin

Emax − Emin
, (9)

which provides a convenient representation of the spec-
trum for varying tilt strength.
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Fig. 4. Exemplary behaviour of the evolution of D̃q

(q = 1 (red), q = 2 (blue), q = ∞ (green)) for the
states |Ψ1〉 (solid lines) and |Ψ2〉 (dashed lines) through
an avoided crossing. The upper and lower panels cor-
respond to the cases considered in Eqs. (6) and (8), re-
spectively, for δ = 0 (left) and δ = 1 (right). Note that
for δ = 0 the trajectories of both states coincide.

The evolution of D̃1 unveils the dependence of Fock-
space localization on F/U , which, as can be observed,
is strongly determined by the presence of avoided cross-
ings. The qualitative behaviour shown in Fig. 4 and dis-
cussed in Sect. 3 can be clearly identified in Fig. 5.

As can be expected for small hopping strength, some
eigenstates will be strongly localized around single Fock
states. In Fig. 5 we highlight, in particular, those
eigenstates which have more than 90% of their norm con-
centrated on a single Fock state with all bosons on one
site, and we label them as |Ψ4000〉, |Ψ0400〉, |Ψ0040〉, and
|Ψ0004〉, indicating the dominant Fock state. This mani-
fold of eigenstates exhibit the strongest localization (low-
est D̃1) for 0 < F/U < 1. In this range, states |Ψ4000〉
and |Ψ0400〉 (green and orange) go through several very
narrow avoided crossings that do not change their lo-
calization properties. The first visible small change
of these states’ structure occurs at F/U = 1, where
a third order avoided crossing happens (i.e., three par-
ticle hopping: state |Ψ4000〉 crosses with |Ψ1300〉, etc.).
At F/U = 3/2 and F/U = 2, two second order avoided
crossings take place. The strongest distortion of localiza-
tion for |Ψ4000〉, |Ψ0400〉 and |Ψ0040〉 occurs at F/U = 3,
due to a first order avoided crossing. The state with
the highest energy, |Ψ0004〉 (red), does not undergo any
avoided crossing and conserves its localization properties
over the whole range of F/U .

Since the hopping strength controls Fock space mix-
ing, localization and hence D̃q should naturally be ex-
pected to depend on the value of J/U . (The larger the
hopping strength, the stronger the level repulsion, the
greater the relevance of higher order crossings, and thus
the shorter the F/U -range within which localization of
the eigenstates mentioned above persists [39].) The most
interesting scenario to be considered is that in which all
parameters in the Hamiltonian, J , U , and F , are compa-
rable, and the Fock space is sufficiently large. The evo-
lution of D̃q for the whole spectrum, as in Fig. 5, gets

Fig. 5. D̃1 (upper panel, Eq. (4)) and energy density
ε (lower panel, Eq. (9)) versus F/U for the TBHH with
L = N = 4 and J/U = 0.05. Colour symbols highlight
those eigenstates that have more than 90% of their norm
concentrated on a single Fock state, as follows: |Ψ4000〉
(green), |Ψ0400〉 (orange), |Ψ0040〉 (black) and |Ψ0004〉
(red). Vertical dashed lines mark the position of major
avoided crossings. The higher density of points between
0 and 1 is due to a finer resolution in F/U .

however increasingly involved for large Hilbert spaces.
In order to assess the existence of eigenstates with spe-
cial localization properties, it is more effective to visualize
a scatter plot D̃q versus ε for different values of the tilt
strength.

In Fig. 6, we show the evolution of the scatter plot D̃2

versus ε for J/U ' 0.4 and increasing values of the tilt,
F/U ∈ {0.10, 0.35, 0.60}, for a system with N = 4 and
system sizes L = 8 (N = 330) and L = 12 (N = 1365).
Those eigenstates with at least 75% of their norm lo-
calized on a Fock state with all bosons on one site are
highlighted in red.

As can be observed, a manifold of L strongly local-
ized eigenstates is clearly identifiable for both system
sizes. Each state of the manifold can still be associated
with a Fock state with all bosons on one site. We re-
fer to all states that are not part of such manifold as
the bulk. The D̃2 values of the bulk and the localized
manifold differ by an order of magnitude, even for values
of F/U comparable to J/U . Furthermore, it is apparent
that all bulk states exhibit similar localization properties,
which give rise to a well defined cluster of D̃2 values that
gets more recognisable the larger L. As F/U increases,
the localized states spread out in energy and eventually
(almost) fully overlap with the bulk along the ε axis.
In the course of this spreading, the states of the manifold
go through a large number of narrow avoided crossings
that do not affect their eigenstate structure (D̃2 does not
change noticeably).
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Fig. 6. Scatter plots D̃2 versus ε for J/U = 0.3981
and three different values of F/U (increasing from top
to bottom) for the TBHH with N = 4 and L = 8 (left
parts) and L = 12 (right parts). The states marked
in red have more than 75% of their norm localized on
the subspace of Fock states with all bosons on one site.
The inhomogeneity of localization within the red mani-
fold is due to the use of HWBC, which reduce further the
Fock space connectivity of the two Fock states with all
bosons on one edge of the lattice. Note that in the bot-
tom right panel, one state of the manifold is undergo-
ing an avoided crossing and breaks the 75% localization
condition.

In Fig. 7, we provide a different perspective of the tran-
sit of the localized manifold through the bulk of the
spectrum as a function of the tilt strength. There,
the level dynamics can be correlated with the evolu-
tion of D̃∞. The orange, red, and blue symbols high-
light the eigenstates with more than 90%, between 90%
and 80%, and between 80% and 70%, respectively, of
their norm localized on the Fock states with all bosons
on one site. The localized manifold induces character-
istic bulk-traversing linear trajectories in the evolution
of the energy spectrum as a function of F/U , as re-
ported in Refs. [18–20]. Such linear dependence stems
from the conserved centre of mass of the bosonic density
in the localized eigenstates, as it follows from the applica-
tion of Hellmann–Feynman’s theorem [40] to the TBHH,
∂E/∂F =

〈∑
l l̃n̂l

〉
.

Fig. 7. Energy E/U and D̃∞ versus F/U for the
TBHH with N = 4, L = 12, and J/U = 0.3981.
The right panel shows a zoom of the level dynamics.
The orange, red, and blue symbols highlight the eigen-
states with more than 90%, between 90% and 80%,
and between 80% and 70%, respectively, of their norm
localized on the Fock states with all bosons on one site.

As F/U is increased, localization in the manifold
is eventually lost. By following the evolution of D̃∞
in Fig. 7, one may estimate that the localized mani-
fold persists up to F/U ≈ 0.6–0.7. For the larger value
of J/U ' 0.4 there considered, higher order avoided
crossings (note in particular the third order crossing
at F/U = 1) play a significant role in the delocaliza-
tion of the manifold (see also Ref. [39]), which can not
be solely attributed to first order hopping processes, as
suggested in Ref. [20].

5. Final discussion

We have studied the localization properties in Fock
space of the many-body eigenstates of the tilted
Bose–Hubbard model. In order to investigate the state
structure, an approach based on generalized fractal di-
mensions D̃q to quantify the degree of localization in fi-
nite Hilbert spaces was used. We have described the lo-
calization properties of states undergoing an avoided
crossing, and identified these in the parametric evolution
of D̃q [39].

In agreement with the results of Refs. [18–20], we have
shown that there exists a special manifold of states which
exhibit robust localization properties well separated from
those of the rest of the spectrum. Such states are strongly
linked to the Fock states with all bosons on onesite.
They exhibit also localization of the bosonic density
in real space. The localized manifold survives in regimes,
where J , U , and F are comparable, i.e., in the presence



Fock Space Localization of Many-Body States in the Tilted Bose–Hubbard Model 839

of a non-trivial interplay between hopping, interaction
and tilt. Moreover, for a fixed number of bosons,
the dependence of localization on F/U is independent
of the number of lattice sites.

The Fock states with all particles on one site have min-
imal connectivity in Fock space. For nearest-neighbour
hopping, they couple only to 2 (or even 1, if they directly
probe the HWBC) other Fock states. In a geometrical vi-
sualization of Fock space (i.e., if Hilbert space is displayed
as a network whose nodes are Fock states which are linked
to each other via the hopping term in Hamiltonian (1)),
these states are always vertices located on the exter-
nal boundary of a complex network. Hence they have
the lowest possible coordination number. This fact is
independent of the total number of bosons and lattice
sites. Therefore, the existence of the localized manifold
in the TBHH should be a generic feature for any values
of N and L.

In Ref. [20], it was suggested that one may also
speak of a second set of states with special localiza-
tion properties that are associated with Fock states of
the form |. . . , 0, N − 1, 1, 0, . . .〉. While we did not look
specifically at the eigenstates emerging from that set of
Fock states, the analysis of D̃q (cf. Fig. 6) signals that
their localization properties must be closer to those of
the bulk of the spectrum, and are not so pronounced as
for what we here called the localized manifold.

Regarding the range of F/U within which the local-
ized manifold exists, an estimation for the upper bor-
der, Ft ' U(N − 1) − 2J

√
N , was given in Ref. [20],

based on the analysis of the width of the first order
avoided crossing between states of the form |Ψ...0,N,0...〉
and |Ψ...0,N−1,1,0...〉, which worked qualitatively well
for the parameters there chosen. For N = 4 and
J/U ' 0.4, the latter equation yields an overestimation
for Ft in view of Fig. 7, where the localized mani-
fold arguably persists until Ft/U ' 0.6–0.7. Nevertheless,
a precise criterion to characterize the loss of localiza-
tion would be necessary in order to unambiguously de-
fine a threshold value for the tilt strength. This requires
a more detailed study that neither here nor in Ref. [20]
was carried out.

The results here presented indicate that the role of
higher order avoided crossings (cf. third order avoided
crossing at F/U = 1 in Fig. 7), perhaps via the use
of higher order degenerate perturbation theory, will
have to be included in such an analysis. Additionally,
the investigation of systems with constant lattice size and
variable N , as well as with constant filling factor N/L,
would be desirable.
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