
Vol. 136 (2019) ACTA PHYSICA POLONICA A No. 5

Proceedings of the 9th Workshop on Quantum Chaos and Localisation Phenomena, May 24–26, 2019, Warsaw, Poland

Non-Abelian Anyons on Graphs
from Presentations of Graph Braid Groups

T. Maciążeka,b,∗

aCenter for Theoretical Physics, Polish Academy of Sciences,
Al. Lotników 32/46, PL-02668 Warszawa, Poland

bSchool of Mathematics, University of Bristol, Bristol BS8 1TW, UK

The aim of this paper is to analyse algorithms for constructing presentations of graph braid groups from
the point of view of anyonic quantum statistics on graphs. In the first part of this paper, we provide a comprehensive
review of an algorithm for constructing so-called minimal Morse presentations of graph braid groups that relies
on discrete Morse theory. Next, we introduce the notion of a physical presentation of a graph braid group as
a presentation whose generators have a direct interpretation as particle exchanges. We show how to derive a physical
presentation of a graph braid group from its minimal Morse presentation. In the second part of the paper, we study
unitary representations of graph braid groups that are constructed from their presentations. We point out that
algebraic objects called moduli spaces of flat bundles encode all unitary representations of graph braid groups.
For 2-connected graphs, we conclude the stabilisation of moduli spaces of flat bundles over graph configuration
spaces for large numbers of particles. Moreover, we set out a framework for studying locally abelian anyons
on graphs whose non-abelian properties are only encoded in non-abelian topological phases assigned to cycles of
the considered graph.
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1. Introduction

Anyonic quantum statistics is a notion that refers
to situations when an interchange of (quasi)particles in
a physical model results with some general unitary trans-
formation of a possibly multicomponent many-body wave
function. Quasi-particles that obey anyonic statistics are
called anyons. They are generalisations of bosons and
fermions in the following sense. If a pair of bosons is
exchanged, the many-particle wave function remains un-
changed, i.e., is multiplied by the trivial phase factor e i 0.
On the other hand, an exchange of two fermions results
with the multiplication of the wave function by factor
−1 = e iπ. For single-component wave functions, an ex-
change of a pair of anyons results with the multiplication
by factor e iθ, for θ ∈]0, π[. Such scalar anyons are known
to appear, for instance, in certain ansatzes for multi-
electron wave functions realising the fractional quantum
Hall effect (FQHE) [1, 2]. More specifically, they approx-
imately describe excited states of FQHE Hamiltonians.
FQHE Hamiltonians also provide models for anyons de-
scribed by multi-component wave functions, called non-
abelian anyons, see e.g. [3]. While there exist physical
models realising anyons on graphs, this field of study is
still quite unexplored. The already existing models have
found use in quantum computing [4] and in solid state
physics [5, 6].

∗e-mail: maciazek@cft.edu.pl

The a priori existence of different types of anyons is
strongly restricted by the topology of the space where
the anyons are constrained to move. For instance, scalar
anyons do not exist in the three-dimensional Euclidean
space, R3 [7]. The same holds true when anyons are con-
strained to move on a closed orientable two-manifold [8].
For R2 the existence of scalar anyons is allowed and there
are no restrictions for the exchange phase θ. If anyons
are constrained to move on a sphere, then the allowed
exchange phases are θ = nπ/N , where N is the num-
ber of anyons and 0 ≤ n ≤ 2N − 3 [9]. It is not clear
how to realise anyon exchange on the line, R, as it is
not possible there to exchange particles without a col-
lision. However, on graphs, i.e., on networks built out
of one-dimensional line segments, the existence of many
junctions allows for a well-defined particle exchange with-
out collisions. This fact has been explored in recent pa-
pers [10–13] to set out a framework for studying abelian
and non-abelian anyons on graphs. In particular, it has
been shown that different types of quantum statistics
are possible on graphs, depending on the topology of
a given graph. For scalar anyons, only bosons and
fermions are possible on 3-connected graphs, whereas
on 2-connected and 1-connected graphs a great variety
of abelian anyons is possible [10]. Much less is known
about non-abelian anyons on graphs. By computing cer-
tain topological invariants of graph configurations spaces
called homology groups [12, 13], using arguments based
on K-theory, it has been shown that for wave functions
with a sufficiently large number of components, for many
families of graphs there is just one class of non-abelian
quantum statistics.
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In this paper, we focus on modelling non-abelian
anyons on graphs via unitary representations of graph
braid groups. Let us next briefly revisit main steps
of this construction. For N particles constrained to
move in a topological space X, we consider wave func-
tions as functions from the n-particle configuration space,
CN (X), to complex numbers, C. The considered wave
functions can have more than one component. If this
is the case, the k-component wave function is described
by a vector Ψ = (Ψ1(q), . . . ,Ψk(q)), where q describes
a configuration of N particles in X. Configuration
space CN (X) encodes some basic properties of the stud-
ied particles. In particular, we consider only hard-
core particles, i.e., from the traditional N -fold carte-
sian product, XN , we exclude collision points given by
∆ = {(q1, . . . , qn) : ∃i6=j qi = qj}. Furthermore, we im-
pose the indistinguishability of particles by identifying
configurations that differ by a permutation of parti-
cles. This can be written concisely as the quotient
CN (X) = (XN −∆)/SN . It is a well-known fact that
such configuration spaces lead to a correct description
of anyonic quantum statistics [2, 7, 14]. Another crucial
ingredient is the notion of a parallel transport of wave
functions around loops in CN (X). If X is a manifold,
one defines a quantum theory by considering a vector
bundle over CN (X). Wave functions are interpreted as
sections of such a vector bundle and gauge potentials
are incorporated as connections on the considered vector
bundle. Recall that in such a setting, flat connections cor-
respond to the vanishing of classical forces in the consid-
ered quantum system. This happens, for instance, when
a screened magnetic field is present in the system so that
it vanishes in the region where the particles are allowed to
move. However, a magnetic potential can still be present
and can affect the behaviour of the quantum system.
Such a flat connection leads to the parallel transport, T̂ ,
that for a given loop γ ⊂ CN (X) (i) transforms wave
functions via unitary operators T̂γΨ = UγΨ , Uγ ∈ U(k),
(ii) operators depend only on the homotopy class of loops,
i.e., Uγ = Uγ′ if γ is homotopy equivalent to γ′. This
gives rise to a unitary representation of the fundamental
group of CN (X), which is called the n-strand braid group
of X and denoted by BrN (X). Therefore, in general, dif-
ferent quantisations of a classical system described by
configuration space CN (X) are in a one-to-one corre-
spondence with isomorphism classes of irreducible uni-
tary representations of BrN (X). A related mathematical
object is called the moduli space of flat bundles given by
the quotient

MN (X,U(k)) :=
Hom

(
BrN (X), U(k)

)
U(k)

. (1)

In other words, all non-abelian quantum statistics for
particles constrained to move in topological space X are
given by points of MN (X,U(k)), while scalar quantum
statistics correspond to MN (X,U(1)), i.e., abelian rep-
resentations of BrN (X).

In the main body of this paper we review chosen al-
gorithms for constructing presentations of graph braid
groups [15, 16], i.e., groups BrN (X), where X = Γ ,
a graph. The aim of the first part of the paper is to
provide a comprehensive overview of an algorithm for
constructing so-called minimal presentations of graph
braid groups [16]. In the second part we analyse the al-
gorithm from the point of view of anyonic quantum
statistics, i.e., unitary representations of graph braid
groups constructed from their minimal presentations.
In particular, (i) we provide arguments for the sta-
bilisation of MN (Γ , U(k)), i.e., if Γ is 2-connected,
there exists N0 such that for all N > N0 we have
MN (Γ , U(k)) ∼=MN0

(Γ , U(k)), (ii) in analogy to anyons
on a torus [17], we define so-called locally abelian
anyons on graphs which are anyons that locally braid as
abelian anyons, but globally behave in a non-abelian way.
Throughout the paper, we analyse examples of graphs
and their corresponding braid groups and derive their
minimal presentations in terms of loops in CN (Γ ).

2. Presentations of graph braid groups
— a review

Graph configuration spaces are aspherical, i.e., their
fundamental group is their only non-vanishing homo-
topy group. Equivalently, the universal covering space
of CN (Γ ) is contractible. Therefore, graph braid groups
encode all topological information about graph configu-
ration spaces (see e.g. [18]). However, finding the form
of BrN (Γ ) for a given graph is known to be a difficult
task. All graph braid groups (we restrict our attention
only to finite graphs) are finitely presented. This means
that there exists a finite set of generators α1, . . . , αr and
a finite set of relators R1(α1, . . . , αr), . . . , Rs(α1, . . . , αr)
in the form of finite words in α1, . . . , αr and their inverses
such that

BrN (Γ ) = 〈α1, . . . , αr|R1(α1, . . . , αr) = 1,

. . . , Rs(α1, . . . , αr) = 1〉. (2)
Equation (2) is called a presentation of group BrN (Γ ).
There exists a certain intuitive choice of generators
for BrN (Γ ) in terms of particles moving on junctions
and loops in Γ [10, 19]. However, this intuitive choice
of generators leads to many redundancies and can be
greatly simplified. Moreover, except for the two-particle
case [20], it is not clear how to complete such a descrip-
tion and write down the set of relators. Therefore, we will
shortly proceed with a different method that relies on dis-
crete Morse theory [15, 16] and leads to a minimal pre-
sentation of BrN (Γ ) as the fundamental group of a much
smaller space called the Morse complex of CN (Γ ) and de-
noted here by D̃N (Γ , T ), where T is a spanning tree of Γ .
One of the drawbacks of the Morse-complex method is
that additional work has to be done in order to inter-
pret generators as loops back in CN (Γ ). Nevertheless,
we show how one can accomplish such an interpretation
and we realise it in examples.
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Fig. 1. A generator of BrN (Γ ) as an exchange of a
pair of particles in a Y -junction. The positions of the
remaining N − 2 particles are fixed.

Fig. 2. A generator of BrN (Γ ) where one particle trav-
els around a cycle in Γ . The positions of the remaining
N − 1 particles are fixed.

Let us start with the aforementioned intuitive set of
generators. The construction of such a set relies on an
analysis of two small canonical graphs. The first canon-
ical graph is a Y -graph which describes an exchange of
a pair of particles on a junction in Γ . The exchange is
called a Y -exchange and goes as shown in Fig. 1, left to
right.

The second graph is a lasso graph (also called a lollipop
graph) that consists of a circle with a lead attached. The
corresponding generator is called an O-generator and is
shown in Fig. 2.
Example 2.1 Two-strand braid group of a Θ-graph.

Group Br2(ΓΘ) is a free group on three generators [20],
Br2(ΓΘ) = 〈αD, αU , γL〉 (see Fig. 3). Generators αU
and αD are of the O-type while generator γL denotes
a Y -exchange on the left junction. Clearly, it is possible
to have an analogous exchange on the right junction, γR.
Such an exchange depends on the above generators as

γR ∼ αD αU γ−1L α−1D α−1U (3)
(see Fig. 4 for a pictorial proof).

2.1. General properties

Before we proceed with the discrete Morse theory for
graphs, we summarise some general properties of graph
braid groups that will play important roles in further
sections. Firstly, recall the definition of the commutator
subgroup. For any group G, its commutator subgroup,
denoted here by G′, is the group generated by group com-
mutators of elements of G:

G′ := 〈αβα−1β−1 : α, β ∈ G〉.

Fig. 3. Group Br2(ΓΘ) is a free group with three gen-
erators: αU , αD, γL. An exchange on the right junc-
tion can be expressed as the above word in the three
generators.

Fig. 4. A pictorial proof showing that α−1
D γLαU ∼(

αDγRα
−1
U

)−1, a relation which is equivalent with re-
lation (3) for generators from Fig. 3 .

The quotient G/G′ is an abelian group called the
abelianisation of G. By the asphericity of graph con-
figuration spaces, we have BrN (Γ )′ ∼= H1(CN (Γ ),Z),
where H1 denotes the first homology group. As it
has been shown in [10, 16], for any graph we have
H1(CN (Γ ),Z) ∼= Zm ⊕ (Z2)

p, where exponents m and p
depend on Γ and N . In particular, p = 0 if and only
if Γ is planar. For 2-connected graphs H1 stabilises,
i.e., H1(CN (Γ ),Z) ∼= H1(C2(Γ ),Z). Recall that Γ is 2-
connected if between any two vertices there exist at least
two independent paths. Presentation of BrN (Γ ) that has
m+ p generators is called minimal. Such a presentation
can be constructed for any graph using Morse-theoretic
methods from [16]. Importantly, for planar graphs the
existence of a minimal presentation implies that BrN (Γ )
is commutator-related (Theorem 4.6 in [16]). This means
that relators {Ri} in minimal presentations for planar
graphs belong to BrN (Γ )′.
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2.2. Morse presentations
Graph configuration spaces have homotopy types of

CW -complexes. There are different ways to obtain
a CW -complex as a deformation retract of CN (Γ ),
one of which is due to Abrams [21] and an other one
due to Świątkowski [22]. The algorithm which we anal-
yse in this paper relies on Abrams’s complex which
we denote by DN (Γ ). The deformation retraction
CN (Γ )→ DN (Γ ) is valid if graph Γ is sufficiently subdi-
vided. This means that one has to subdivide edges of Γ
by adding an appropriate number of vertices of degree 2
so that the following conditions are met [23].

1. Each path between distinct essential vertices (ver-
tices of degree not equal to 2) contains at leastN−1
edges.

2. Each nontrivial cycle in Γ contains at least N + 1
edges.

An important property of DN (Γ ) is that it is a regular
cube complex. This means that its cells are cubes that
are glued with each other by identifying their faces (glu-
ing maps are injective). Cells of DN (Γ ) are denoted as
sets of cardinality N whose elements are either edges or
vertices of Γ , all disjoint with each other. While comput-
ing graph braid groups we will only be interested in one-
and two-dimensional cells of DN (Γ ). Hence, let us write
down explicitly the general form of a 1-cell and a 2-cell.
A 1-cell of DN (Γ ) is of the form
{e, v1, . . . , vN−1}, (4)

where e ∈ E(Γ ), {v1, . . . , vN−1} ⊂ V (Γ ), vi 6= vj for
i 6= j and e ∩ vi = ∅ for all i. Similarly, a general 2-cell
of DN (Γ ) is of the form
{e, e′, v1, . . . , vN−2}, (5)

where {e, e′} ⊂ E(Γ ), {v1, . . . , vN−2} ⊂ V (Γ ), vi 6= vj
for i 6= j, and e∩vi = e′∩vi = ∅ for all i. In order to define
a boundary map, we choose a spanning tree T ⊂ Γ and
order its vertices in the following way. We choose a pla-
nar embedding of T and choose a vertex of degree 1 to
be the root of T . This choice fully determines a bound-
ary map on DN (Γ ), the resulting Morse complex and
presentation of BrN (Γ ). The root has label 1. Next,
we move along the tree from the root and number the con-
secutive vertices with consecutive natural numbers.
When a junction of degree d is met, the branches are
indexed by 0, 1, . . . , d − 1, where branch 0 is the one
that leads to the root and the remaining branches are in-
dexed increasingly in the clockwise direction from branch
0. The priority in numbering have (unnumbered) vertices
that lie on the branch with the lowest index. After finish-
ing the labelling process, the vertices of Γ form a totally
ordered set. Every edge e ∈ E(Γ ) has its initial and
final vertex which are denoted by ι(e) and τ(e), respec-
tively, and satisfy τ(e) < ι(e). This gives an orientation
of 1-cells of DN (Γ ). Namely, a cell of the form (4) is ori-
ented from {ι(e), v1, . . . , vN−1} to {τ(e), v1, . . . , vN−1}.
Presentations of BrN (Γ ) will be phrased in terms of ori-
ented 1-cells and their inverses treated as an alphabet.

Fig. 5. A 2-cell of DN (Γ ) and its oriented boundary.

To every 2-cell (5) we assign its boundary word as fol-
lows (Fig. 5):
{e, ι(e′), v}{e′, τ(e), v}{e, τ(e′), v}−1{e′, ι(e), v}−1, (6)
where v is a shorthand notation for v1, . . . , vN−2.

The Morse complex D̃N (Γ , T ) is constructed via
a Morse matching W on DN (Γ ). W is a collection of
functions {Wi}dimDN (Γ)−1

i=0 , each of which is a function
from the set of i-cells of DN (Γ ) to the set of i + 1-cells
of DN (Γ ). Each Wi is a partial function which means
that it is not surjective and its domain is only a subset of
i-cells, called the set of redundant i-cells. Cells that be-
long to the image of Wi are called collapsible. The sets
of redundant and collapsible i-cells are always disjoint.
Moreover, if Wi(σ) = τ , then τ is an i + 1-cell whose
boundary contains cell σ. Cells which are neither col-
lapsible nor redundant are called critical and these are
the cells that constitute the Morse complex. A Morse
matching has to satisfy a few more general conditions,
for which we refer the reader to [24]. Let us next proceed
to the exact form of the Morse matching that we will
use. We will focus on functions W0 and W1 as these are
the relevant ones in computing BrN (Γ ). Intuitively, the
Morse matching gives a set of rules to slide particles down
the tree T as if the particles were attracted to the root.
For any vertex v ∈ V (Γ ) we define its corresponding edge
e(v) as the unique edge in T , which satisfies ι(e(v)) = v.
Let σ be a 0-cell or a 1-cell. This means that σ is either a
subset of N vertices of Γ or σ is of the form (4). We say
that vertex v ∈ σ is unblocked if (σ − {v})∪ e(v) is a cell
of DN (Γ ). In other words, one can slide v down the tree
without colliding with other elements of σ. Otherwise,
vertex v is called blocked. Another important notion is
the notion of a non-order-respecting edge. An edge e ∈ σ
is non-order-respecting if (i) e is not in T (in that case
e is also called a deleted edge), or (ii) there is a vertex
v ∈ σ such that ι(e) > v > τ(e) and e(v) ∩ e = τ(e).
Otherwise, e is order-respecting. Intuitively, this gives
a priority rule for particles meeting at junctions of T
— the particle occupying the branch of the lowest index
has the priority to move. Critical cells are now easily
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characterised as those whose all vertices are blocked and
all edges are non-order-respecting. Moreover, we will al-
ways choose the spanning tree T , so that there is just
one critical 0-cell. Such a critical 0-cell is necessarily of
the form {1, 2, . . . , N}. It follows that all other 0-cells of
DN (Γ ) are redundant. A 0-cell σ(0) is mapped by W0 to
a 1-cell by replacing the lowest unblocked vertex v ∈ σ by
its corresponding edge e(v). A 1-cell, σ(1), is redundant
if and only if it is not in the image of W0 and it is not
critical. If this is the case, then W (σ(1)) is determined
by replacing the lowest unblocked vertex v ∈ σ(1) with
e(v). Now we have all the building blocks that are needed
to compute the Morse presentation of BrN (Γ ). Denote
by wi an arbitrary word from the alphabet built on ori-
ented 1-cells of DN (Γ ) and their inverses. The follow-
ing two theorems constitute a foundation of our further
considerations.
Theorem 2.1 [15, 24] BrN (Γ ) is generated by all crit-

ical 1-cells subject to relations that come from boundary
words (2.2) of critical 2-cells by the following set of moves.

1. Free cancellation. If w = w1σσ
−1w2 or

w = w1σ
−1σw2, do w → w1w2.

2. Collapsing. If w = w1σw2 or w = w1σ
−1w2

and σ is collapsible, do w → w1w2.
3. Simple homotopy. If w = w1σw2 or w = w1σ

−1w2

and σw3 is a boundary word of a 2-cell τ such that
W1(σ) = τ , do w → w1w

−1
3 w2 or w → w1w3w2,

respectively.

By iterating the above set of moves, one ends up with an
invariant word w̃ which consists only of critical 1-cells.
Theorem 2.2 [15] Let T ⊂ Γ be a spanning tree such

that the corresponding Morse complex consists of only
one critical 0-cell. Then,

BrN (Γ ) =
〈
Σ (1)|b̃(τ) = 1, τ ∈ Σ (2)

〉
, (7)

where Σ (i) denotes the set of critical i-cells of the Morse
complex D̃N (Γ , T ) and b(σ) denotes the boundary word
of σ, as in (2.2).

A Python implementation of the above Theorems 2.1
and 2.2 created by the authors of this paper can be found
on website [24] in a program which computes Morse pre-
sentations of graph braid groups.
Example 2.2 Morse presentations for a Θ-graph

for N ≤ 4. Consider a Θ-graph in Fig. 6, which
is sufficiently subdivided for 5 particles (the reasons for
subdividing the graph more than necessary will become
clear in Sect. 2.4). For N = 2 we have the following crit-
ical 1-cells in D2(ΓΘ):

α̃1 =
{
e81, 2

}
, α̃2 =

{
e111 , 2

}
, γ̃ =

{
e95, 6

}
. (8)

There are no critical 2-cells in D2(ΓΘ), hence we have
reproduced the result from Fig. 3 — Br2(ΓΘ) is a free
group on 3 generators (8). For N = 3, the critical 1-cells
read

α̃1 =
{
e81, 2, 3

}
, α̃2 =

{
e111 , 2, 3

}
, γ̃ =

{
e95, 1, 6

}
,

σ1 =
{
e95, 6, 7

}
, σ2 =

{
e95, 6, 10

}
, (9)

Fig. 6. A Θ-graph sufficiently subdivided for N ≤ 5
together with a choice of a spanning tree and vertex
order.

while the critical 2-cells read
τ1 =

{
e81, e

9
5, 6
}
, τ2 =

{
e111 , e

9
5, 6
}
.

It is straightforward to verify (perhaps with the aid
of a computer program) that the boundary words are
respectively

b̃(τ1) = α̃1γ̃
−1α̃−11 γ̃−1σ1, b̃(τ2) = α̃2γ̃

−1α̃−12 σ2. (10)
From the corresponding pair of relators we get that
(i) σ1 = γ̃α̃1γ̃α̃

−1
1 , (ii) σ2 = α̃2γ̃α̃

−1
2 . Hence, via the Ti-

etze transformations we obtain an analogous situation as
for N = 2, i.e.,

Br3(ΓΘ) = 〈α̃1, α̃2, γ̃〉.

Finally, let us demonstrate that Br4(ΓΘ) is no longer
a free group. The critical 1-cells read

α̃1 =
{
e81, 2, 3, 4

}
, α̃2 =

{
e111 , 2, 3, 4

}
,

γ̃ =
{
e95, 1, 2, 6

}
, σ1 =

{
e95, 1, 6, 7

}
,

σ2 =
{
e95, 1, 6, 10

}
, σ3 =

{
e95, 6, 7, 8

}
,

σ4 =
{
e95, 6, 7, 10

}
, σ5 =

{
e95, 6, 10, 11

}
, (11)

while the critical 2-cells read
τ1 =

{
e81, e

9
5, 2, 6

}
, τ2 =

{
e111 , e

9
5, 2, 6

}
,

τ3 =
{
e111 , e

9
5, 6, 7

}
, τ4 =

{
e81, e

9
5, 6, 7

}
,

τ5 =
{
e111 , e

9
5, 6, 10

}
, τ6 =

{
e81, e

9
5, 6, 10

}
.

Boundary words for cells τ1 and τ2 are exactly the same
expressions as in (10). Besides that, we have

b̃(τ3) = α̃2σ
−1
1 α̃−12 σ4,

b̃(τ4) = α̃1σ
−1
1 α̃−11 γ̃−1σ3,

b̃(τ5) = α̃2σ
−1
2 α̃−12 σ5,

b̃(τ6) = γ̃α̃1σ
−1
2 α̃−11 γ̃−1σ−12 σ4. (12)

To obtain a minimal presentation of Br4(ΓΘ) we
realise the following Tietze transformations. From
b̃(τ3) = 1 and from the expression for σ1 we extract
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σ4 = α̃2γ̃α̃1γ̃α̃
−1
1 α−12 . Similarly, from b̃(τ4) = 1 and

b̃(τ5) = 1 we obtain expressions for σ3 and σ5, respec-
tively. Hence, the only nontrivial relator in Br4(ΓΘ)

comes from b̃(τ6) = 1 after plugging in expressions for σ4
and σ2. One can rewrite the result as follows:

Br4(ΓΘ) = 〈α̃1, α̃2, γ̃| [γ̃, Adα̃1α̃2
(γ̃)] = 1〉 , (13)

where we use a shorthand notation Adh(g) := hgh−1.

2.3. Minimal presentations

Example 2.2 shows some of the crucial features of com-
putations related to the Morse presentations of graph
braid groups. First of all, the number of generators can
be greatly reduced via the Tietze transformations by util-
ising some of the relators. As shown in [16], this can
be done in a systematic way by dividing the set critical
1-cells into sets of so-called pivotal, separating, and free
cells. Free cells automatically contribute to the minimal
Morse presentation. All pivotal cells and some of the
separating cells can be removed via boundary words of
appropriate critical 2-cells. In this section, we will briefly
review this construction. Secondly, for a graph which is
sufficiently subdivided for N particles, boundary words
of critical 2-cells for N ′ particles, N ′ < N , are inher-
ited as boundary words of appropriate critical 2-cells for
N ′ + 1 particles. We will utilise this fact in Sect. 3.
We start this section with recalling the following
crucial lemma.
Lemma 2.3 Minimal presentations [16]. Group

BrN (Γ ) has a minimal presentation over mN,Γ + pN,Γ
generators for mN,Γ and pN,Γ that are natural numbers,
which determine H1(CN (Γ ),Z) = ZmN,Γ ⊕ (Z2)

pN,Γ .
As a corollary, we obtain that for a planar graph

BrN (Γ ) has a presentation over mN,Γ generators. More-
over, if Γ is 2-connected, then the number of gen-
erators of a minimal presentation stabilises with N
for N ≥ 2, i.e., mN,Γ = m2,Γ and pN,Γ = p2,Γ .
This can be observed in Example 2.2, where for N ≥ 2
we have H1(CN (ΓΘ)) = H1(C2(ΓΘ)) = Z3.

In order to find a minimal Morse presentation of
BrN (Γ ) we have to introduce a few technical notions
from paper [16]. However, in order to keep the presenta-
tion clear and concise, when possible, we will skip some
of the details.

We say that an edge e ∈ E(Γ ) is separated in T ⊂ Γ
by v ∈ V (Γ ) if ι(e) and τ(e) lie in two distinct connected
components of T − {v}. The first technical step is to
choose a spanning tree T ⊂ Γ which satisfies the follow-
ing conditions of Lemma 2.5 in [19]. Thus, T1 — for
every edge e ∈ E(Γ ) − E(T ) we have that ι(e) is of va-
lency 2; T2 — every edge e ∈ E(Γ )− E(T ) is not sepa-
rated in T by any vertex v ∈ V (Γ ) such that v < τ(e).
For the sake of completeness, we mention that there is
an additional property T3, which is phrased in terms
of other geometric properties of Γ , however we will not
write it down here. We only point out that in paper [16]
there is an algorithmic way to choose a tree which sat-
isfies properties T1, T2, and T3. The choice of such

a tree is essential for definitions of pivotal, separating,
and free cells to work. One of the key notions is the size
of a critical 1-cell denoted by s(σ). For a critical cell (4),
s(σ) is the number of vertices in σ that are blocked be-
hind τ(e) on branches incident to τ(e) with index greater
than 0. In Example 2.2, cells from Eq. (11) have sizes
s(α̃1) = s(α̃2) = 0, s(γ̃) = 1, s(σ2) = s(σ2) = 2,
and s(σ3) = 3.

In the remaining part of this subsection, we specify our
considerations to 2-connected graphs, as we anticipate
that such graphs appear in most of the physically relevant
situations. The notion of the size of a critical cell was
necessary for introducing a simple criterion for separating
out most of the pivotal cells. We state this criterion
without a proof in the form of the following fact.
Fact 2.4 [16]. Every critical 1-cell σ with s(σ) ≥ 2

is pivotal, hence can be expressed as a word in free and
separating 1-cells.

It follows that effectively all relevant generators in
a minimal Morse presentation of BrN (Γ ) appear already
on the level of N = 2. This can be seen by noting that
vertices in a critical cell that are blocked behind the root
of T can be ignored to give the corresponding critical
cell in D2(Γ ). In this way, the minimal set of generators
of BrN (Γ ) can be found only by considering the two-
particle case. For N > 2, additional work has to be
done to eliminate new pivotal cells and make appropriate
Tietze transformations in order to recover new rela-
tors between the minimal generators from the boundary
words of critical 2-cells. This can be done in an algo-
rithmic way by ordering the pivotal 1-cells and critical
2-cells in an appropriate way, as described in [16]. We an-
ticipate to incorporate this algorithm in our Python
implementation [25].

2.4. Relating minimal presentations
to particle exchanges

As our considerations from the preceding sections
show, it is not clear how to connect generators of BrN (Γ )
in its Morse presentation with some physical particle
exchanges on Γ . In this subsection we show how this
can be accomplished. Presentations of BrN (Γ ), where
generators can be directly interpreted as particle ex-
changes will be called physical presentations. It turns
out that physical presentations can be derived from min-
imal Morse presentations. However, in order to recover
particle exchanges from a minimal Morse presentation of
BrN (Γ ), one usually has to add some new generators and
new relators.

We start by introducing two classes of loops in Dn(Γ ).
Assume that T is a spanning tree of Γ which satis-
fies conditions T1, T2, and T3 described in Sect. 2.3.
The first loop is associated with an exchange of a pair
of particles on a Y -junction in T . More precisely, choose
a Y -subgraph of T , which is spanned on vertices k, l,m, n
such that k < l < m < n and vertex l has degree
at least 3. To such a Y -subgraph we associate the follow-
ing word, which we call the Y -loop:
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γk,m,n(v) := {enl , k, v}{eml , k, v}−1{elk,m, v}−1×

{enl ,m, v}−1{eml , n, v}{elk, n, v}. (14)
In the above expression, by v we denote a set of N − 2
vertices of V (Γ ) such that v ∩ {k, l,m, n} = ∅. A key
observation is that if all vertices in v are blocked in cell
{enl ,m, v}, then this cell is critical. Furthermore, we have
the following lemma.
Lemma 2.5 Let γ be a Y -loop in DN (Γ ) as in (14).

If v = {1, 2, . . . , N − 2}, then γ is mapped to the Morse
complex as critical cell {enl ,m, v}−1.

Sketch of a proof. By the assumption about the form
of v, cells {elk,m, v}, {eml , n, v}, {elk, n, v} are collapsible.
Cells {enl , k, v}, {eml , k, v} are redundant. To find the im-
age of the redundant cells under the Morse flow we use
Lemma 2.3 in [16], which shows that they are carried by
the Morse flow to collapsible cells {enl , 1, 2, . . . , N − 1}
and {eml , 1, 2, . . . , N − 1}, respectively. �

The other type of generators are loops associated to
oriented simple cycles in Γ . Such generators will be called
O-loops. Denote by O = v1 → v2 → . . . → vp → v1
an oriented simple cycle in Γ that passes through the se-
quence of vertices (v1, v2, . . . , vp, v1), where vi is adjacent
in Γ to vi−1 and vi+1 for i ∈ {2, . . . , p}. For any v, a set
of N − 1 vertices of Γ such that O ∩ v = ∅ we define
the corresponding O-loop as the product:

αO(v) :=
∏

e∈E(Γ)∩O

{e, v}ae , (15)

where ae = 1 if the orientation of e inherited from the or-
der of vertices in the spanning tree agrees with the ori-
entation of cycle O and ae = −1 otherwise.
Lemma 2.6 Let αO(v) be an O-loop in DN (Γ ) as de-

fined in (15). Let v = {1, 2, . . . , N − 1} if for all deleted
edges e ∈ O ∩ (E(Γ ) − E(T )) we have τ(e) > 1 and
let v = {2, 3, . . . , N} otherwise. Then, word αO(v) is
mapped to the Morse complex as

αO(v) 7→
∏

e∈O∩(E(Γ)−E(T ))

{e, ve}ae ,

where ve = {1, 2, . . . , N − 1} if τ(e) > 1 and
v = {2, 3, . . . , N} otherwise.

Sketch of a proof. If e ∈ E(T ), then cell {e, v} is col-
lapsible. Otherwise, if e ∈ (E(Γ ) − E(T )), the image
of cell {e, v} in the Morse complex can be easily found
using Lemma 2.3 in [16]. �

The general strategy is to express generators of a min-
imal Morse presentation of BrN (Γ ) as words in Y - and
O-loops. There is one technical detail to make sure that
all loops are based at the same point given by configu-
ration {1, . . . , N}. This can be easily dealt with by con-
jugating Y - and O-loops with words that connect their
initial configurations with the base point. The following
lemma allows us to make sure that such a conjugation
does not affect the image of Y - and O-loops in the Morse
complex.
Lemma 2.7 [15]. The set of collapsible 1-cells in

DN (Γ ) is a spanning tree of the 1-skeleton of DN (Γ ).

Hence, there exists a path Pv from {1, . . . , N} to any
configuration v = {v1, . . . , vN} that is a word consisting
of only collapsible cells.

The next crucial step is to find the actual images of Y -
and O-loops in the Morse complex. Although the above
Lemmas 2.5 and 2.6 provide some simplification, for ar-
bitrary configurations of free particles v this is usually
a complicated task.
Example 2.3 Physical presentations of BrN (ΓΘ).

Let us start with N = 2 and minimal Morse presenta-
tion of Br2(ΓΘ) given in Eq. (8). Consider Y -loop
γ4,6,9 = {e95, 4}{e65, 4}−1{e54, 6}−1{e95, 6}−1{e65, 9}{e54, 9}.

By Lemma 2.5, we have γ4,6,9 7→ {e95, 6}−1 = γ̃−1.
Next, let us take O-loops αD({2}) and αU ({9}), where
the corresponding simple cycles read
D = 5→ 6→ 7→ 8→ 1→ 11→ 10→ 9→ 5,

U = 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ 1.

By Lemma 2.6, we have αD({2}) 7→ {e81, 2}{e111 , 2}−1 =
α̃1α̃

−1
2 and by a direct calculation we find out that

αU ({9}) 7→ {e95, 6}{e81, 2} = γ̃α̃1. Hence, we invert
the above expressions as

γ̃ = γ−1, α̃1 = γαU , α̃2 = α−1D γαU , (16)
where we denote the Y -loop γ4,6,9 as γ and the O-loops
shortly as αU and αD. Because Br2(ΓΘ) is free, we sim-
ply have

Br2(ΓΘ) = 〈γ4,6,9, αD({2}), αU ({9})〉.

To rederive relation (3) note first that we can identify
γ ≡ γL from Fig. 3. Word associated to loop γR reads

γR = {e111 , 2}{e81, 2}−1{e21, 8}{e111 , 8}−1

×{e81, 11}{e21, 11}−1.

By a direct calculation we check that γR 7→
α̃2α̃

−1
1 α̃−12 γ̃α̃1, which after substituting expressions (16)

yields relation (3) between physical loops.
Let us next immediately skip to N = 4. We pro-

pose a similar set of generators as γ := γ4,6,9({1, 2}),
αD := αD({2, 3, 4}) and αU := αU ({9, 10, 11}).
Again, by Lemmas 2.5 and 2.6 we obtain that γ 7→
γ̃−1 and αD 7→ α̃1α̃

−1
2 . However, for αU we have

αU 7→ α̃−11 γ̃−1σ−12 σ−15 . This brings new generators, σ2
and σ5 into play. We would like to replace them with
Y -loops γ′ := γ4,6,9({1, 10}) and γ′′ := γ4,6,9({10, 11}).
By a direct computation we check that indeed γ′ 7→ σ−12

and γ′′ 7→ σ−15 . At this point we have enough loops to
invert the above relations. The result reads

γ = γ̃−1, σ2 = (γ′)−1, σ5 = (γ′′)−1,

α̃1 = γγ′γ′′α−1U , α̃2 = α−1D γγ′γ′′α−1U . (17)
As a final step, we rephrase the relator of minimal Morse
presentation (13) in terms of new generators. Moreover,
we have to add two new relators that express the depen-
dence of γ′ and γ′′ on other generators. After a straight-
forward substitution, the relator from presentation (13)
now reads
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R1 =
[
γ−1, Adγγ′γ′′α−1

U α−1
D γγ′γ′′α−1

U

(
γ−1

)]
.

The additional relators are obtained from boundary
words (13). In particular, we have 1 = α̃2γ̃

−1α̃−12 σ2 and
1 = α̃2σ

−1
2 α̃−12 σ5. After substituting Morse generators

with expressions (17), we get

R2 = Adα−1
D γγ′γ′′α−1

U
(γ) (γ′)

−1
,

R3 = Adα−1
D γγ′γ′′α−1

U
(γ′) (γ′′)

−1
. (18)

Summing up, we have replaced minimal Morse presenta-
tion (13) with 3 generators and 1 relator with a physical
presentation with 5 generating loops

Br4(ΓΘ) = 〈γ, γ′, γ′′, αU , αD|R1 = 1,

R2 = 1, R3 = 1〉. (19)
The above example presents the full complexity of the

problem of constructing physical presentations of graph
braid groups. A systematic way of constructing such pre-
sentations can be summarised in the following points.

1. Find a minimal Morse presentation of BrN (Γ ).
2. Find Y - and O-loops whose images in the Morse

complex contain generators of the minimal Morse
presentation.

3. If the images of Y - and O-loops from the previous
point contain critical cells other than the minimal
generators, add Y - and O-loops that map to the
new critical cells. Repeat the procedure until a
closed system of equations is obtained.

4. Invert the equations to express critical cells as
words in Y - and O-loops.

5. Substitute the minimal generators with their cor-
responding words in Y - and O-loops to rewrite re-
lators of the minimal Morse presentation in terms
of words in loops.

6. From boundary words of critical 2-cells construct
new relators that express the dependence of crit-
ical cells on the minimal generators. Rewrite the
relators in terms of Y - and O-loops.

3. Stabilisation of MN (Γ , U(k))

Let us revisit Eq. (2). In order to construct a U(k) rep-
resentation of group BrN (Γ ), to each generator we assign
a unitary matrix αi 7→ Ui, i = 1, . . . , r. Relators {Ri}si=1

impose polynomial equations for the chosen set of ma-
trices. Hence, we immediately see that MN (Γ , U(k)) is
an algebraic variety, i.e., is defined as the zero set of a sys-
tem of polynomial equations. More precisely, we have
MN (Γ , U(k)) = µ−1N (11, . . . , 11)/U(k), (20)

where map µN : U(k)r → U(k)s acts as
µN (U1, . . . , Ur) = (Ri(U1, . . . , Ur))

s
i=1 .

The essential part in establishing stabilisation of
MN (Γ , U(k)) is to define a map which allows us to
rewrite generators and relators of a minimal presentation
of BrN (Γ ) as generators and relators of BrN+1(Γ ).

Definition 3.1 Assume that Γ is sufficiently subdi-
vided for some, possibly large, N . For a critical 1-cell
σ ∈ DN ′(Γ ) for N ′ < N define σ+ as σ ∪ {v} for v such
that v is the minimal vertex among {1, . . . , N} for which
σ ∪ {v} is a critical 1-cell in DN ′+1(Γ ). Similarly, for τ
a critical 2-cell define τ+ as τ ∪ {v} for v such that v is
the minimal vertex among {1, . . . , N} for which σ ∪ {v}
is a critical 1-cell in DN ′+1(Γ ). We extend map + to
words by acting on consequent cells.
Lemma 3.1 If σ̃a11 . . . σ̃akk is the boundary word

for a critical 2-cell τ , i.e., b̃(τ) = σ̃a11 . . . σ̃akk , then
b̃(τ+) = (σ̃1)

a1
+ . . . (σ̃k)

ak
+ .

Proof. Boundary word for b(τ+) for τ+ = τ ∪ {v} is
obtained from b(τ) simply by adding vertex v to each
cell in b(τ). Furthermore, if σ 7→ σ̃ then if v is such
that σ̃+ = σ̃ ∪ {v} then we have σ ∪ {v} 7→ σ̃+ under
the Morse flow. �

The above lemma directly implies that for 2-connected
graphs generators of the minimal Morse presentation of
BrN ′(Γ ), N ′ < N , for a choice of spanning tree T ⊂ Γ
are in a one-to-one correspondence with generators of
the minimal Morse presentation of BrN ′+1(Γ ) via map
+ as defined in 3.1. Furthermore, if R is a relator
for the above minimal Morse presentation of BrN ′(Γ ),
then R+ is a relator for BrN ′+1(Γ ). This means that
MN ′+1(Γ , U(k)) ⊂ MN ′(Γ , U(k)) as an algebraic sub-
variety. In other words, MN ′+1(Γ , U(k)) satisfies all
polynomial equations that define MN ′(Γ , U(k)) and
some additional polynomial equations coming from new
relators. Because the number of complex variables is
fixed by the number of generators of the minimal Morse
presentation and by number k, the procedure of adding
new equations has to stabilise at some point.
Example 3.1 Space M4(ΓΘ , U(k)). Assign

(γ̃, α̃1, α̃2) 7→ (Uγ̃ , U1, U2) ⊂ U(k)3. On the level
of matrices, relator from presentation (13) can be
rewritten as [Uγ̃ , AdU1U2

(Uγ̃)] = 0, where by square
brackets we mean here the algebraic commutator
[A,B] = AB − BA. Using the conjugation freedom, one
can diagonalise both Uγ̃ and AdU1U2

(Uγ̃) at the same
time. Note that matrices Uγ̃ and AdU1U2

(Uγ̃) are
isospectral. Hence after the aforementioned diago-
nalisation, conjugation AdU1U2

(Uγ̃) can only permute
eigenvalues of Uγ̃ . If the spectrum of Uγ̃ is non-
degenerate, this means that U1U2 = eiαP , where
P is a permutation matrix. In other words,
M4(ΓΘ , U(k)) contains k! isotypical connected com-
ponents MP labelled by elements of the symmetric
group, P ∈ Sk. Each component is of the form

MP
∼= U(k)× U(1)× (U(1)k −∆)

Sk
.

Factor (U(1)k − ∆)/Sk where ∆ := {(z1, . . . , zk) ∈
U(1)k : zi = zj for some i 6= j} corresponds to
the quotient of the set of diagonal U(k) matrices with
non-degenerate spectra by the action of the Weyl
group which permutes the eigenvalues. A tuple
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(U, e iα, [(e iφ1 , . . . , e iφk)]) ∈ MP determines U1 = U ,
U2 = U† e iαP and Uγ̃ = diag(e iφ1 , . . . , e iφk).

If matrix Uγ̃ has a d-fold degeneracy in its spectrum,
matrix U1U2 must be of the form e iαPB, where B
is a block-diagonal matrix with a d × d block forming
a U(d) matrix and ones outside the d × d block. Ma-
trix P is a permutation matrix from the quotient Sk/Sd.
Thus, we have components

M(d)
P
∼= U(k)× U(d)× U(1)2 × (U(1)k−d −∆)

Sk−d
.

A tuple (U,B, e iα, e iφ, [(e iφ1 , . . . , e iφk−d)]) ∈ M(d)
P

determines U1 = U , U2 = U† e iαPB and Uγ̃ =
diag(e iφ, . . . , e iφ, e iφ1 , . . . , e iφk−d). In the extreme
case, where Uγ̃ = e iφ11, U1U2 can be any U(k) ma-
trix. Hence, in this case we have only one com-
ponent M0

∼= U(d) × U(d) × U(1), where a tu-
ple (U,U ′, e iφ), determines U1 = U , U2 = U ′ and
Uγ̃ = diag(e iφ, . . . , e iφ).

Summing up, we have obtained the following decom-
position into connected components:
M4(ΓΘ , U(k)) =

M0 t
⊔
P∈Sk

MP t
k−1⋃
d=2

⊔
P∈Sk/Sd

M(d)
P . (21)

The above decomposition simplifies slightly when spec-
ified to k = 2. Then, the spectrum of Uγ̃ is ei-
ther non-degenerate or Uγ̃ = e iφ11. Component
M0 = U(2)2 × U(1). There are two “non-degenerate”
components MP that correspond to the identity and
the transposition element of S2. BothMP are of the form
U(2) × U(1) × C2(U1), where C2(U1) is a two-point un-
ordered configuration space of U(1), which is a topologi-
cal circle. It is known that C2(S

1) is topologically S1.

4. Locally abelian anyons

Following the concept of generalised fractional statis-
tics on a torus which was introduced in [17], we show
how to define analogous statistics on graphs using phys-
ical presentations of graph braid groups from Sect. 2.4.
The idea is to construct U(k)-representations of BrN (Γ ),
where to generating Y -loops we assign matrices of
the form eiφ11 and only to generating O-loops we as-
sign general unitary matrices. The interpretation is that
Y -loops correspond to exchanges of pairs of particles
which are local in the sense that they are localised on
junctions of Γ . Hence, Y -loops only utilise the local
structure of Γ as a star graph. On the other hand,
O-loops are global entities in the sense that they take
a particle around a simple cycle in Γ , which can cross
many junctions and hence they utilise the global struc-
ture of Γ . We say that anyons arising as such rep-
resentations of graph braid groups are locally abelian
anyons. This is because matrices from local Y -loops
commute with each other and result with the multiplica-
tion of the multi-component wave function by an abelian
phase factor.

It has been shown in [17] that quasiholes in certain
Laughlin wave functions with periodic boundary condi-
tions can be subject to generalised fractional statistics.
Finding a physical model for locally abelian anyons on
graphs is an open problem.

Let us next show how locally abelian anyons are
realised on a Θ-graph.
Example 4.1 Locally abelian anyons on a Θ-graph

Let us examine the physical presentation of Br4(ΓΘ) that
we derived in Example 2.3. For the Y -loops we assign
γ 7→ Uγ = e iφ11, γ′ 7→ Uγ′ = e iφ

′
11, γ′′ 7→ Uγ′′ = e iφ

′′
11.

To theO-loops we assign general U(k)matrices αU 7→ UU
and αD 7→ UD. Relations between φ, φ′ and φ′′ can be
derived from relators R1, R2, and R3 in Eq. (19). In par-
ticular, because unitary matrices assigned to Y -loops are
proportional to identity, they are invariant under conju-
gation. Hence, R1 = 11 is satisfied automatically while
R2 = 11 and R3 = 11 yield

φ = φ′ = φ′′mod2π.

Hence, locally abelian anyons from Br4(ΓΘ) are de-
termined by an arbitrary choice of local exchange
phase φ ∈ [0, 2π[ and global gauge U(k) operators UD,
UU . This exactly corresponds to component M0 of
M4(ΓΘ , U(k)) in Eq. (21).
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