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Investigation of the Wigner Reaction Matrix
of Microwave Networks Simulating Quantum Graphs
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We present new experimental studies of distributions of the Wigner reaction K matrix for open microwave
networks. The one-port measurements were performed for the systems with broken time reversal symmetry in
the regime of strong losses, where resonances are not resolved. Our studies are complementary to the previous
two-port investigations. Fully connected six-vertex microwave networks were used to simulate quantum chaotic
systems with broken time reversal symmetry. The usability of the distributions of the Wigner reaction K matrix
as an effective tool for evaluation of losses in chaotic systems has been confirmed.
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1. Introduction

A description of large complicated quantum sys-
tems, for example, nuclear scattering systems, using
the Schrödinger equation is very inefficient. In 1959
Wigner successfully proposed to use random matrices for
such a purpose [1]. Later, Bohigas et al. showed that
some features of quantum chaotic billiards may be de-
scribed by random matrices [2]. It was with the devel-
opment of numerical calculations that the highway was
opened for theoretical studies of complex quantum sys-
tems [3–5]. On the other hand, there is a lack of ex-
perimental studies because controllable experimental in-
vestigation of such systems is very difficult and some-
times even impossible. Introducing microwave cavities
(resonators) [6, 7] and networks [8] simulating respec-
tively quantum billiards and graphs improved this situa-
tion. The experiments in the microwave domain are well
controlled and are relatively cheap.

Quantum graphs were introduced by Pauling [9].
They are the structures consisting of zero-dimensional
vertices connected by one-dimensional bonds and are
widely used to model real physical systems whose size
in one dimension is much larger than in other dimen-
sions. Among others, they allow to study properties of
bounded quantum systems, which are chaotic in the clas-
sical limit [8, 10–17] and open systems, which display
chaotic scattering [18–21]. The examples of systems and
models described by quantum graphs are superconduct-
ing quantum circuits [22], quantum circuits in tun-
nel junctions [23], experimental setups to realize high-
dimensional multipartite quantum states [24], discrete-
time quantum gravity models [25], and functional connec-
tivity in preclinical Alzheimer’s disease [26]. Quantum
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graphs [10, 11, 13] may be simulated by microwave net-
works (graphs) [8, 27] consisting of microwave joints
(vertices) connected by microwave cables (bonds). This
is possible because the Schrödinger equation describing
a quantum graph is formally analogous to the telegraph’s
equation for signal propagation in a microwave network.
It should be noticed that only microwave networks pro-
vide the experimental simulation of quantum systems
representing all three symmetry classes in the random
matrix theory (RMT), namely: systems with preserved
time reversal symmetry (TRS) belonging to the Gaussian
orthogonal ensemble (GOE, β = 1) [8, 20, 28, 29], or to
the Gaussian symplectic ensemble (GSE, β = 4) [30] and
the systems with broken TRS belonging to the Gaus-
sian unitary ensemble (GUE, β = 2) [8, 18, 31–33].
One should generally mention that the model sys-
tems such as microwave networks [8, 27, 28, 32, 34],
flat microwave cavities [35–40] and experiments us-
ing the Rydberg atoms strongly driven by microwave
fields [41–47] appeared to be very successful in simpli-
fying analysis of complex quantum systems.

Properties of TRS invariant open systems (β = 1)
have been extensively studied in many aspects. The sta-
tistical distributions of a single-channel scattering ma-
trix S were investigated, taking into account imper-
fect coupling and direct processes, theoretically [48–53]
and experimentally [54]. The distributions of the re-
flection coefficient P (R) and the imaginary P (v) and
the real P (u) parts of the Wigner reaction matrix were
theoretically studied in the whole range of the dimension-
less parameter γ = 2πΓ/∆, being a measure of system
losses [55, 56], where Γ and ∆ are the resonance width
and the mean level spacing, respectively. It is worth not-
ing that the imaginary part (v > 0) of the Wigner reac-
tion matrix K ≡ u− iv is known in solid-state physics as
the local density of states (LDoS) [55]. Experimentally
the Wigner reaction matrix K was investigated in
microwave cavities [35, 57, 58] and for moderate and
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strong losses γ ≤ 47.7 in microwave networks [20, 59–61].
Quantum networks with leads are very interesting open
systems and therefore they were also thoroughly studied
theoretically [14, 19, 21, 62].

The open chaotic systems with broken TRS (β = 2)
and high losses are much less known. They have been
fragmentarily studied experimentally till now. Elastic en-
hancement factor for microwave networks was measured
for the parameter range 7 < γ < 62 [18, 63].

In this paper we present an experimental study of
the distributions of the real and imaginary parts of
the Wigner reaction matrix K [55, 64, 65] for a fully
connected six-vertex [66], irregular network simulating
a quantum graph with broken time reversal symmetry.
This study complements our previous research, the re-
sults of which have been published in [20, 59, 67],
on one-channel investigations in the case of strong losses.

2. Theoretical outline

The distribution of the one-channel reaction K matrix
can be obtained from the normalized scattering matrix s
of a network evaluated for the perfect coupling to the sys-
tem, when direct processes are not present [53, 58, 68]:

K = i
s− 1

s+ 1
. (1)

The relationship between the matrix s and the scatter-
ing matrix S measured directly in the experiment will
be discussed in detail later. The reaction matrix K is
also related to the network normalized impedance [58] z:
K = − iz.

Generally, the scattering matrix S is a square matrix
of a dimension equal to the number of ports connected
to the scattering system, however in the case of single
channel measurements S is just a complex number. It can
be parameterized as

S =
√
Re iθ, (2)

where R and θ are the reflection coefficient and the phase
measured at the port of the network, respectively.

In this study we will analyze the distribution P (R)
of the reflection coefficient R and the distributions of
the real P (u) and imaginary P (v) parts of the Wigner
reaction matrix.

The distribution of the reflection coefficient P (R) is
given by [52, 56, 69]:

P (R) =
2

(1−R)2
P0

(1 +R

1−R

)
. (3)

The probability distribution P0(x) for systems with one
perfect coupled channel and with broken time reversal
symmetry β = 2 is an analytical expression [52, 56, 69]:

P0(x) =
1

2

[
A
(α(x+ 1)

2

)β/2
+B

]
exp
(
−α(x+ 1)

2

)
,

(4)
where α = γβ/2, A = eα − 1, and B = 1 + α− eα.

The distributions of the real P (u) and imaginary P (v)
parts of the Wigner reaction matrix are also expressed
by the probability distribution P0(x) [55]:

P (u) =
1

2π
√
u2 + 1

∞∫
0

dqP0

[√u2 + 1

2

(
q +

1

q

)]
, (5)

and

P (v) =

√
2

πv3/2

∞∫
0

dqP0

[
q2 +

1

2

(
v +

1

v

)]
, (6)

where u = ReK is the real part and v = −ImK > 0 is
the imaginary element of K matrix.

In the case of one-channel, perfect coupled systems
with preserved time reversal symmetry the probabil-
ity distribution is defined by its integrated distribution
W (x) =

∫∞
x
P0(x)dx [53, 56]:

W (x) =
x+ 1

4π

[
f1(ω)g2(ω) + f2(ω)g1(ω)

+h1(ω)j2(ω) + h2(ω)j1(ω)
]
ω= 1

2 (x−1)
, (7)

with auxiliary functions f, g, h, j in the following form:

f1(ω) =

∞∫
ω

dt

√
t|t− ω|e−

γt
2

(1 + t)3/2
[1− e−γ + t−1],

g1(ω) =

∞∫
ω

dt
1√

t|t− ω|
e−

γt
2

(1 + t)3/2
,

h1(ω) =

∞∫
ω

dt

√
t|t− ω|e−

γt
2√

t(1 + t)
[γ + (1− e−γ)(γt− 2)],

j1(ω) =

∞∫
ω

dt
1√

t|t− ω|
e−

γt
2

√
1 + t

, (8)

and their counterparts with the index β = 2 are the same,
but with the integration borders [0, ω] instead of [ω,∞].

In both cases, in the limit of large losses, the distri-
bution of reflection coefficient can be approximated by
the Rayleigh distribution

P (R) = αe−αR, (9)
and the formulae (5) and (6) take the forms

P (u) =

√
α

4π
exp(−αu

2

4
) (10)

and

P (v) =

√
α

4πv3
exp

(
−α

4

(√
v − 1√

v

))
. (11)

It should be emphasized that in the case of strong losses
due to strong absorption and/or strong coupled channels
opening a system, conventional measures of its chaotic-
ity and symmetry class based on spectral correlation
functions are useless since overlapping energy levels pre-
clude determining their positions. Then, apart from
the Wigner reaction matrix also the elastic enhancement
factor [18, 70, 71] can be used for this purpose. How-
ever, using it requires 2-port measurements, which is
unnecessary for the Wigner reaction matrix.
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3. Experiments

To determine the Wigner reaction matrix we mea-
sured the scattering matrix S of the 6-vertex (hexagon),
fully connected microwave networks, simulating quantum
graphs with broken time reversal symmetry (β = 2).
This was verified in the earlier two-port experiment [67]
performed for a similar system.

A microwave network contains vertices (microwave
joints) connected by bonds (coaxial cables). The six- and
five-arm microwave joints were manufactured in our lab-
oratory. The SMA-RG402 coaxial cables with an inner
conductor of radius r1 = 0.05 cm and an outer tubu-
lar conductor of the inner radius r2 = 0.15 cm were ap-
plied. The conductors are insulated by Teflon with a di-
electric constant ε ' 2.06 [72, 73] that fills the space
between them. Only the fundamental TEM mode can
propagate in the coaxial cables below the onset fre-
quency of the next TE11 mode. This cut-off frequency is
νcut ' c

π(r1+r2)
√
ε
' 33 GHz [74], where c is the speed of

light in vacuum. Absorption of the networks can be con-
trolled by changing their length and/or by introducing to
them microwave attenuators [59, 60]. In these measure-
ments fifteen 2 dB attenuators, one at each bond, were
introduced. The experimental setup is shown in Fig. 1.

To simulate the quantum graphs with broken TRS four
Anritsu PE8403 microwave circulators with low insertion
loss which operate in the frequency range 7–14 GHz were
introduced to the networks. These are non-reciprocal
three-port passive devices. A wave entering the circulator
through port 1, 2, or 3 goes out through the port 2, 3,
or 1, respectively (see Fig. 1).

Different networks realizations were created primarily
with the help of four phase shifters (see Fig. 1). In one
step, the optical lengths of each of the two selected bonds
were changed by 0.5 cm by a corresponding pair of phase
shifters giving a change in the total length of the net-
work by 1 cm. Then the same was repeated for the
second pair of bonds. Finally, after 20 such steps the
total optical length was changed by 20 cm. Next, one of
the network bond was replaced with a longer one and the
procedure with the phase shifters was repeated. In this
way 127 realizations of the network simulating a GUE
system with the total optical length between 7.78 and
9.12 m were obtained.

A vector network analyzer (VNA) Agilent E8364B was
used to measure the scattering matrix S. The network
was connected to VNA via the lead — HP 85133-616
flexible microwave cable attached to the only six-arm
vertex of it. The measurements were carried out in
the frequency range 7–14 GHz corresponding to the op-
eration range of the circulators. The example of the
observed spectrum in the frequency range 10–11 GHz
is shown in Fig. 2.

In order to obtain elements of the Wigner reaction ma-
trix and the mean reflection coefficient 〈R〉 = 〈ss†〉 from
the experimentally measured scattering matrix S, it is
necessary to extract its s value for a perfect coupling

Fig. 1. The experimental setup for the measurements
of the one-port scattering matrix S. Six-vertex, fully
connected network, consisting of 15 bonds and atten-
uators, four circulators and four phase shifters is con-
nected to the vector network analyzer Agilent E8364B
via 85133-616 flexible microwave cable.

Fig. 2. An example of the measured modulus |S| of
the one-port scattering matrix S in the frequency
range 10–11 GHz. The measurements were done
for the network containing 2 dB attenuators yielding
γ = 46.2± 5.1. Since γ is large, all resonances are over-
lapping.

by eliminating direct processes. It should be noted
that in the case of quantum graphs and simulating
them microwave networks with the Neumann bound-
ary conditions the perfect coupling with outside world
is even theoretically impossible. This is the result of
a non zero probability of the input signal reflection
(back scattering) (|σij |2) at any non-trivial vertex i of
a valency vi ≥ 3 [11]. The valency of a vertex is
the number of edges connected to it for quantum graphs
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Fig. 3. The distributions of reflection coefficient P (R), the real P (u) and imaginary P (v) parts of Wigner reaction
matrix for the one-port measurements. The full circles mark experimental data while the solid lines represent theoretical
predictions for systems with one strongly coupled channel. The theoretical distribution of the reflection coefficient P (R)
approximated by the Rayleigh formula (9) is marked by triangles in part (a). The application of this formula yielded
γ = 46.1 ± 5.2. The inset in part (a) shows the comparison of the theoretical distributions of the reflection coefficient
P (R) calculated from the accurate formula (3) (solid line) and the Rayleigh formula (9) (triangles).

and the number of arms of the microwave joint in the
case of microwave networks. This probability increases
with number of connections (arms) of the vertex

|σij |2 =

∣∣∣∣−δij +
2

vi

∣∣∣∣2 . (12)

The elimination of direct processes can be done using
the Poison kernel, the distribution of a phase of a scat-
tering matrix [53, 54, 59] or in case of microwave sys-
tems also with the help of impedance approach [35, 58],
in which electrical properties of the system are exploited.
The normalized scattering matrix without direct pro-
cesses s is related to the normalized impedance z,
as follows:

s =
1− z
1 + z

, (13)

where the normalized impedance z of a chaotic microwave
network is given by
z = (ReZr)−1/2[ReZ + i(ImZ − ImZr)](ReZr)−1/2.

(14)
In this formula Z = Z

1/2
0 (1 + S)/(1 − S)Z

1/2
0 and

Zr = Z
1/2
0 (1 + Sr)/(1− Sr)Z1/2

0 are the network and
the radiation impedance matrices expressed, respectively,
by the network S and the radiation Sr scattering ma-
trices. Z0 is a characteristic impedance of the network
bonds attached to the 6-arm joint. The radiation scat-
tering matrix Sr was measured at the input of the 6-arm
vertex. When the number of external leads attached to
the vertex is smaller than the number of internal edges at-
tached to it, we call this vertex unbalanced [34]. Such ver-
tices are used, e.g., in the recent photovoltaic smartwire
connection technology [75]. The remaining 5 vertex arms
were closed with 50 Ω loads simulating its infinity shift.

The parameter γ of the system was evaluated by fit-
ting the theoretical mean reflection coefficient

〈R〉th =

1∫
0

dRRP (R) (15)

to the experimental one 〈R〉 = 〈ss†〉 obtained after elim-
inating the direct processes.

The review of Eqs. (9)–(11) shows that the distribu-
tions P (R), P (u), and P (v) will be formally the same for
the GUE and GOE systems, if instead of γ, γ/2 will be
introduced for GOE system. This feature can be used
to distinguish the symmetry of the system under study,
if it is possible to perform an independent evaluation of
the parameter γ.

4. Results

The obtained distributions of the reflection coeffi-
cient P (R), the real P (u) and imaginary P (v) parts of
the Wigner reaction matrix from the one-port measure-
ments are presented in Fig. 3 in part (a), (b), and part
(c), respectively. The full circles denote experimental val-
ues, while the solid line represents the theoretical curves
fitted to the experimental results by finding the proper
value of the parameter γ. The theoretical curves were
calculated from the formulae (3), (5), and (6). The agree-
ment between the experimental data and the theoretical
predictions is very good. Only for the real part P (u)
of the Wigner reaction matrix some visible discrepancies
appeared. It is clearly seen that the decay of the re-
flection coefficient P (R) is given by a single exponential
function, as expected from the formula (9).

The value of γ evaluated by fitting the theoretical
mean reflection coefficient to the experimental results
〈R〉 = 〈ss†〉 obtained after eliminating the direct pro-
cesses (see formulae (13)–(15)) is 46.2± 5.1. The appli-
cation of the Rayleigh formula (9) yielded γ = 46.1± 5.2.
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The theoretical distribution of the reflection coeffi-
cient P (R) given by formula (9) is marked by triangles
in Fig. 3a. The inset in panel (a) shows the compari-
son of the theoretical distributions of the reflection co-
efficient P (R) calculated from the accurate formula (3)
(solid line) and the Rayleigh formula (9) (triangles).
As we can see, both results are very close to each other
even in the tails of the distributions. The statement that
in the limit of strong losses the distribution of the reflec-
tion coefficient P (R) can be approximated by a simple ex-
ponential function (formula (9)) has been already formu-
lated in [67] in the case of two open channels. Our results
confirm the usability of the distributions of the Wigner
reaction K matrix as a powerful tool for the evaluation
of losses in GUE chaotic systems.

5. Conclusions

We have confirmed that the distributions of
the real P (u) and the imaginary P (v) parts of
the Wigner reaction matrix are excellent tools for
investigating quantum chaotic systems with broken
time reversal symmetry, especially, within the limit of
strong losses. In such a limit due to overlapping of
energy levels it is extremely difficult or even impossi-
ble to apply the conventional measures of chaoticity
of quantum systems such as the spectral correlation
functions. In the limit of strong losses the use of the dis-
tributions of the real P (u) and the imaginary P (v)
parts of the Wigner reaction matrix supplements the
application of the elastic enhancement factor in more
versatile characterization of chaotic systems.

Acknowledgments

This work was supported in part by the National
Science Centre, Poland, Grant No. UMO-2018/30/Q
/ST2/00324 and the National Centre for Research and
Development, Grant POIR.04.01.04-00-0144/17.

References

[1] E.P. Wigner, Ann. Math. 62, 548 (1959).
[2] O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev.

Lett. 52, 1 (1984).
[3] H.J. Stöckmann, Quantum Chaos: An Introduction,

Cambridge University Press, Cambridge 2000.
[4] F. Haake, Quantum Signatures of Chaos, Springer-

Verlag, Heidelberg 2001.
[5] H.A. Weidenmüller, G.E. Mitchell, Rev. Mod. Phys.

81, 539 (2009).
[6] H.J. Stöckmann, J. Stein, Phys. Rev. Lett. 64, 2215

(1990).
[7] E. Doron, U. Smilansky, Phys. Rev. Lett. 65, 3072

(1990).
[8] O. Hul, Sz. Bauch, P. Pakoński, N. Savytskyy,

K. Życzkowski, L. Sirko, Phys. Rev. E 69, 056205
(2004).

[9] L.J. Pauling, Chem. Phys. 4, 673 (1936).
[10] T. Kottos, U. Smilansky, Phys. Rev. Lett. 79, 4794

(1997).
[11] T. Kottos, U. Smilansky, Ann. Phys. 274, 76 (1999).
[12] G. Tanner, J. Phys. A 33, 3567 (2000).
[13] F. Barra, P. Gaspard, J. Stat. Phys. 101, 283 (2000).
[14] T. Kottos, H. Schanz, Physica E 9, 523 (2001).
[15] P. Pakoński, K. Życzkowski, M. Kuś, J. Phys. A 34,

9303 (2001).
[16] R. Blümel, Yu. Dabaghian, R.V. Jensen, Phys. Rev.

Lett. 88, 044101 (2002).

[17] P. Pakoński, G. Tanner, K. Życzkowski, J. Stat. Phys.
111, 1331 (2003).

[18] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Rev.
E 81, 046204 (2010).

[19] T. Kottos, U. Smilansky, Phys. Rev. Lett. 85, 968
(2000).

[20] M. Ławniczak, O. Hul, S. Bauch, P. Šeba, L. Sirko,
Phys. Rev. E 77, 056210 (2008).

[21] Z. Pluhař, H.A. Weidenmüller, Phys. Rev. Lett. 112,
144102 (2014).

[22] H.Z. Jooya, K. Reihani, S.I. Chu, Sci. Rep. 6, 37544
(2016).

[23] O.F. Namarvar, G. Dridi, C. Joachim, Sci. Rep. 6,
30198 (2016).

[24] M. Krenn, X. Gu, A. Zeilinger, Phys. Rev. Lett. 119,
240403 (2017).

[25] P. Arrighi, S. Martiel, Phys. Rev. D 96, 024026
(2017).

[26] M.R. Brier, J.B. Thomas, A.M. Fagan, J. Hassen-
stab, D.M. Holtzman, T.L. Benzinger, J.C. Morris,
B.M. Ances, Neurobiol. Aging 35, 757 (2014).

[27] M. Ławniczak, S. Bauch, L. Sirko, in: Handbook of
Applications of Chaos Theory, Eds. C.H. Skiadas,
C. Skiadas, CRC Press, Boca Raton 2016, p. 559.

[28] O. Hul, M. Ławniczak, Sz. Bauch, A. Sawicki,
M. Kuś, L. Sirko, Phys. Rev. Lett. 109, 040402
(2012).

[29] B. Dietz, V. Yunko, M. Białous, Sz. Bauch,
M. Ławniczak, L. Sirko, Phys. Rev. E 95, 052202
(2017).

[30] A. Rehemanjiang, M. Allgaier, C.H. Joyner,
S. Müller, M. Sieber, U. Kuhl, H.J. Stöckmann, Phys.
Rev. Lett. 117, 064101 (2016).

[31] M. Allgaier, S. Gehler, S. Barkhofen, H.-J. Stöck-
mann, U. Kuhl, Phys. Rev. E 89, 022925 (2014).

[32] M. Białous, V. Yunko, Sz. Bauch, M. Lawniczak,
B. Dietz, L. Sirko, Phys. Rev. Lett. 117, 144101
(2016).

[33] M. Ławniczak, M. Białous, S. Bauch, B. Dietz,
L. Sirko, Acta Phys. Pol. A 132, 1672 (2017).

[34] M. Ławniczak, J. Lipovský, L. Sirko, Phys. Rev. Lett.
122, 140503 (2019).

[35] S. Hemmady, X. Zheng, E. Ott, T.M. Antonsen,
S.M. Anlage, Phys. Rev. Lett. 94, 014102 (2005).

[36] L. Sirko, P.M. Koch, R. Blümel, Phys. Rev. Lett. 78,
2940 (1997).

http://dx.doi.org/10.2307/1970079
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1103/RevModPhys.81.539
http://dx.doi.org/10.1103/RevModPhys.81.539
http://dx.doi.org/10.1103/PhysRevE.69.056205
http://dx.doi.org/10.1103/PhysRevE.69.056205
http://dx.doi.org/10.1063/1.1749766
http://dx.doi.org/10.1103/PhysRevLett.79.4794
http://dx.doi.org/10.1103/PhysRevLett.79.4794
http://dx.doi.org/10.1006/aphy.1999.5904
http://dx.doi.org/10.1088/0305-4470/33/18/304
http://dx.doi.org/10.1023/A:1026495012522
http://dx.doi.org/10.1016/S1386-9477(00)00257-5
http://dx.doi.org//10.1088/0305-4470/34/43/313
http://dx.doi.org//10.1088/0305-4470/34/43/313
http://dx.doi.org/10.1103/PhysRevLett.88.044101
http://dx.doi.org/10.1103/PhysRevLett.88.044101
http://dx.doi.org/10.1023/A:1023012502046
http://dx.doi.org/10.1023/A:1023012502046
http://dx.doi.org/10.1103/PhysRevE.81.046204
http://dx.doi.org/10.1103/PhysRevE.81.046204
http://dx.doi.org/10.1103/PhysRevLett.85.968
http://dx.doi.org/10.1103/PhysRevLett.85.968
http://dx.doi.org/10.1103/PhysRevE.77.056210
http://dx.doi.org/10.1103/PhysRevLett.112.144102
http://dx.doi.org/10.1103/PhysRevLett.112.144102
http://dx.doi.org/10.1038/srep37544
http://dx.doi.org/10.1038/srep37544
http://dx.doi.org/10.1038/srep30198
http://dx.doi.org/10.1038/srep30198
http://dx.doi.org/PhysRevLett.119.240403
http://dx.doi.org/PhysRevLett.119.240403
http://dx.doi.org/10.1103/PhysRevD.96.024026
http://dx.doi.org/10.1103/PhysRevD.96.024026
http://dx.doi.org/10.1016/j.neurobiolaging.2013.10.081
http://dx.doi.org/10.1103/PhysRevLett.109.040402
http://dx.doi.org/10.1103/PhysRevLett.109.040402
http://dx.doi.org//10.1103/PhysRevE.95.052202
http://dx.doi.org//10.1103/PhysRevE.95.052202
http://dx.doi.org/10.1103/PhysRevLett.117.064101
http://dx.doi.org/10.1103/PhysRevLett.117.064101
http://dx.doi.org/10.1103/PhysRevE.89.022925
http://dx.doi.org/10.1103/PhysRevLett.117.144101
http://dx.doi.org/10.1103/PhysRevLett.117.144101
http://dx.doi.org/10.12693/APhysPolA.132.1672
http://dx.doi.org/10.1103/PhysRevLett.122.140503
http://dx.doi.org/10.1103/PhysRevLett.122.140503
http://dx.doi.org/10.1103/PhysRevLett.94.014102
http://dx.doi.org/10.1103/PhysRevLett.78.2940
http://dx.doi.org/10.1103/PhysRevLett.78.2940


816 M. Ławniczak, S. Bauch, V. Yunko, M. Białous, J. Wrochna, L. Sirko

[37] Y. Hlushchuk, A. Błędowski, N. Savytskyy, L. Sirko,
Phys. Scr. 64, 192 (2001).

[38] R. Blümel, P.M. Koch, L. Sirko, Found. Phys. 31,
269 (2001).

[39] B. Dietz, A. Richter, Chaos 25, 097601 (2015).
[40] M. Białous, B. Dietz, L. Sirko, Phys. Rev. E 100,

012210 (2019).
[41] R. Blümel, A. Buchleitner, R. Graham, L. Sirko,

U. Smilansky, H. Walther, Phys. Rev. A 44, 4521
(1991).

[42] M. Bellermann, T. Bergemann, A. Haffmann,
P.M. Koch, L. Sirko, Phys. Rev. A 46, 5836 (1992).

[43] L. Sirko, S. Yoakum, A. Haffmans, P.M. Koch, Phys.
Rev. A 47, R782 (1993).

[44] L. Sirko, P.M. Koch, Appl. Phys. B 60, S195 (1995).
[45] L. Sirko, A. Haffmans, M.R.W. Bellermann,

P.M. Koch, Europhys. Lett. 33, 181 (1996).
[46] L. Sirko, S.A. Zelazny, P.M. Koch, Phys. Rev. Lett.

87, 043002 (2001).
[47] L. Sirko, P.M. Koch, Phys. Rev. Lett. 89, 274101

(2002).
[48] G. López, P.A. Mello, T.H. Seligman, Z. Phys. A

302, 351 (1981).
[49] E. Doron, U. Smilansky, Nucl. Phys. A 545, 455

(1992).
[50] P.W. Brouwer, Phys. Rev. B 51, 16878 (1995).
[51] D.V. Savin, Y.V. Fyodorov, H.J. Sommers, Phys.

Rev. E 63, 035202 (2001).
[52] Y.V. Fyodorov, JETP Lett. 78, 250 (2003).
[53] Y.V. Fyodorov, D.V. Savin, H.J. Sommers, J. Phys.

A 38, 10731 (2005).
[54] U. Kuhl, M. Martinez-Mares, R.A. Méndez-Sánchez,

H.J. Stöckmann, Phys. Rev. Lett. 94, 144101 (2005).
[55] Y.V. Fyodorov, D.V. Savin, JETP Lett. 80, 725

(2004).
[56] D.V. Savin, H.J. Sommers, Y.V. Fyodorov, JETP

Lett. 82, 544 (2005).
[57] R.A. Méndez-Sánchez, U. Kuhl, M. Barth,

C.V. Lewenkopf, H.J. Stöckmann, Phys. Rev.
Lett. 91, 174102 (2003).

[58] S. Hemmady, X. Zheng, T.M. Antonsen Jr., E. Ott,
S.M. Anlage, Phys. Rev. E 74, 036213 (2006).

[59] O. Hul, O. Tymoshchuk, S. Bauch, P.M. Koch,
L. Sirko, J. Phys. A 38, 10489 (2005).

[60] O. Hul, S. Bauch, M. Ławniczak, L. Sirko, Acta Phys.
Pol. A 112, 655 (2007).

[61] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr.
T135, 014050 (2009).

[62] P. Exner, J. Lipovský, Phys. Lett. A 375, 805 (2011).
[63] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr.

T143, 014014 (2011).
[64] G. Akguc, L.E. Reichl, Phys. Rev. E 64, 056221

(2001).
[65] V.V. Sokolov, O.V. Zhirov, Phys. Rev. E 91, 052917

(2015).

[66] O. Hul, P. S̆eba, L. Sirko, Phys. Rev. E 79, 066204
(2009).

[67] M. Ławniczak, L. Sirko, Sci. Rep. 9, 5630 (2019).
[68] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr.

T147, 014018 (2012).
[69] C.W.J. Beenakker, P.W. Brouwer, Physica E 9, 463

(2001).
[70] M. Ławniczak, M. Białous, V. Yunko, S. Bauch,

L. Sirko, Phys. Rev. E 91, 032925 (2015).
[71] M. Ławniczak, M. Białous, V. Yunko, S. Bauch,

L. Sirko, Acta Phys. Pol. A 128, 974 (2015).
[72] K.H. Breeden, A.P. Sheppard, Radio Sci. 3, 205

(1968).
[73] N. Savytskyy, A. Kohler, S. Bauch, R. Blümel,

L. Sirko, Phys. Rev. E 64, 036211 (2001).
[74] D.S. Jones, Theory of Electromagnetism, Pergamon

Press, Oxford 1964, p. 254.
[75] T. Söderström, P. Papet, Y. Yao, J. Ufheil, Smartwire

connection technology, Meyer Burger, 2014.

http://dx.doi.org/10.1238/Physica.Regular.064a00192
http://dx.doi.org/10.1023/A:1017590503566
http://dx.doi.org/10.1023/A:1017590503566
http://dx.doi.org/10.1063/1.4915527
http://dx.doi.org/10.1103/PhysRevE.100.012210
http://dx.doi.org/10.1103/PhysRevE.100.012210
http://dx.doi.org/10.1103/PhysRevA.44.4521
http://dx.doi.org/10.1103/PhysRevA.44.4521
http://dx.doi.org/10.1103/PhysRevA.46.5836
http://dx.doi.org/10.1103/PhysRevA.47.R782
http://dx.doi.org/10.1103/PhysRevA.47.R782
http://dx.doi.org/10.1209/epl/i1996-00318-5
http://dx.doi.org/10.1103/PhysRevLett.87.043002
http://dx.doi.org/10.1103/PhysRevLett.87.043002
http://dx.doi.org/10.1103/PhysRevLett.89.274101
http://dx.doi.org/10.1103/PhysRevLett.89.274101
http://dx.doi.org//10.1007/BF01414267
http://dx.doi.org//10.1007/BF01414267
http://dx.doi.org/10.1016/0375-9474(92)90484-2
http://dx.doi.org/10.1016/0375-9474(92)90484-2
http://dx.doi.org/10.1103/PhysRevB.51.16878
http://dx.doi.org/10.1103/PhysRevE.63.035202
http://dx.doi.org/10.1103/PhysRevE.63.035202
http://dx.doi.org/10.1134/1.1622041
http://dx.doi.org/10.1088/0305-4470/38/49/017
http://dx.doi.org/10.1088/0305-4470/38/49/017
http://dx.doi.org/10.1103/PhysRevLett.94.144101
http://dx.doi.org/10.1134/1.1868794
http://dx.doi.org/10.1134/1.1868794
http://dx.doi.org/10.1134/1.2150877
http://dx.doi.org/10.1134/1.2150877
http://dx.doi.org/10.1103/PhysRevLett.91.174102
http://dx.doi.org/10.1103/PhysRevLett.91.174102
http://dx.doi.org/10.1103/PhysRevE.74.036213
http://dx.doi.org/10.1088/0305-4470/38/49/003
http://dx.doi.org/10.12693/APhysPolA.120.A-185
http://dx.doi.org/10.12693/APhysPolA.120.A-185
http://dx.doi.org/10.1088/0031-8949/2009/135/014050
http://dx.doi.org/10.1088/0031-8949/2009/135/014050
http://dx.doi.org/10.1016/j.physleta.2010.12.042
http://dx.doi.org/10.1088/0031-8949/2011/T143/014014
http://dx.doi.org/10.1088/0031-8949/2011/T143/014014
http://dx.doi.org/10.1103/PhysRevE.64.056221
http://dx.doi.org/10.1103/PhysRevE.64.056221
http://dx.doi.org/10.1103/PhysRevE.91.052917
http://dx.doi.org/10.1103/PhysRevE.91.052917
http://dx.doi.org/10.1103/PhysRevE.79.066204
http://dx.doi.org/10.1103/PhysRevE.79.066204
http://dx.doi.org/10.1038/s41598-019-42123-y
http://dx.doi.org/10.1088/0031-8949/2012/T147/014018
http://dx.doi.org/10.1088/0031-8949/2012/T147/014018
http://dx.doi.org/10.1016/S1386-9477(00)00245-9
http://dx.doi.org/10.1016/S1386-9477(00)00245-9
http://dx.doi.org/10.1103/PhysRevE.91.032925
http://dx.doi.org/10.12693/APhysPolA.128.974
http://dx.doi.org/10.1002/rds196839976
http://dx.doi.org/10.1002/rds196839976
http://dx.doi.org/10.1103/PhysRevE.64.036211
http://www.hanplast.eu/files/upload_files/white-paper-swct.pdf
http://www.hanplast.eu/files/upload_files/white-paper-swct.pdf

