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Out-of-time-order correlators being explored as a measure of quantum chaos, are studied here in a coupled
bipartite system. Each of the subsystems can be chaotic or regular and lead to very different out-of-time-order
correlators growths both before and after the scrambling or the Ehrenfest time. We present preliminary results
then on weakly coupled subsystems which have very different Lyapunov exponents. We also review the case when
both the subsystems are strongly chaotic when a random matrix model can be pressed into service to derive an
exponential relaxation to saturation.
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1. Introduction

Much of the work on quantum chaos was tradition-
ally based on the Schrödinger equation: stationary state
properties, time-evolving states, and statistics of spec-
tra. The connection of quantum states or observables
with classical trajectories is not straightforward, the cor-
respondence holding till the Ehrenfest time. Initially
nearby classical trajectories can deviate exponentially at
the rate of the Lyapunov exponent and is one of the
important ingredients of classical chaos. Various sig-
natures or imprints of classical chaos in the stationary
properties in the corresponding quantum systems have
been known from a long time. Recently, the Heisen-
berg picture has come into prominence with operator
evolution providing the opportunity to connect more in-
timately to the evolution of classical observables, when
a semiclassical limit exists. Operator scrambling and
out-of-time-ordered correlators (OTOC) are two quan-
tities that are being currently intensely investigated
and can be used to define dynamical features of chaos
in the quantum system [1–20].

OTOC were first studied in the context of semiclas-
sical approximations in the theory of superconductiv-
ity [21]. More recently the OTOC has been studied in
the context of quantum gravity, anti-de Sitter/conformal
field theory (AdS-CFT) correspondence, field theories,
and many-body physics, including many-body localiza-
tion [2, 6, 7, 22]. The correlators are useful to quan-
tify quantum chaos by defining a quantum analogue
of the Lyapunov exponent, as for chaotic systems the
OTOC grow exponentially till the Ehrenfest time with
a rate which can be considered as a quantum equiv-
alent of the Lyapunov exponent [9, 23]. This is most
apparent on studying the increase of non-commutativity
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of two (say Hermitian) operators, one evolving with time.
We consider the OTOC to be simply

C(t) = −1

2
〈 [A(t), B(0)]2〉, (1)

where 〈·〉 represents the thermal average over an ensem-
ble at temperature T . A standard semiclassical argument
makes it plausible that this can increase exponentially
with time. As, if A and B are the position and momen-
tum operator the commutator [x(t), p(0)]2 is semiclassi-
cally equivalent to the Poisson bracket, ~2{x(t), p(0)}2 =
~2(∂x(t)/∂x(0))2, and this exhibits exponential growth
for chaotic systems, i.e., (∂x(t)/∂x(0))2 ≈ exp(2λt) and
reflects the sensitive dependence on initial conditions.

Another interesting fact about OTOC is the conjecture
the rate has an upper bound, λ ≤ 2πkBT/~ [23]. The
Sachdev–Ye–Kitaev (SYK) model, a disordered model of
Fermions with all-to-all interactions, is one of the maxi-
mally chaotic system which saturates the bound [24, 25].
Similar bound was found in earlier studies of scram-
bling of quantum information around a black hole hori-
zon [26, 27]. The exponential growth of C(t) occurs
in a time window td < t < tEF where td is a “diffu-
sion time scale” before which the growth can be depen-
dent on the operators used and is typically a small time
scale that does not scale with the system size, while tEF
is the Ehrenfest time and could be the time of break-
down of classical-quantum correspondence if a classical
limit exists.

While OTOC have been studied extensively for many-
body systems such as spin chains and coupled harmonic
oscillators [19], it presents intriguing features even for sin-
gle and few-body systems. Therefore many recent studies
have also concentrated on low-dimensional systems with
a known semiclassical limit such as the quantum standard
map, the quantum bakers map, quantum billiards, the
perturbed cat map, the kicked top, which can be viewed
as a completely connected spin model [9, 13, 14, 28, 29].
All these display the expected exponential growth till
the Ehrenfest time, which scales as ∼ logN , where N
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is the Hilbert space dimension. This follows from the
Ehrenfest time scaling as log(1/h)/λ, where h is a scaled
Planck constant and λ is the classical Lyapunov exponent
and N ∼ 1/h.

In the Wigner phase space representation, the com-
mutator is equivalent to the Moyal bracket which is
equal to the Poisson bracket in the ~ → 0 limit. Be-
yond the Ehrenfest time, the ~ corrections start domi-
nating and there exists no classical correspondence for
the OTOC. This contribution studies a model that is bi-
partite, the Hilbert space of states has a tensor product
structure of two N -dimensional weakly interacting sub-
systems HN1 ⊗ HN2 . It is possible to arrange for various
dynamical states of the subsystems, when both are reg-
ular, both are chaotic or when one is regular and one is
chaotic. Of these in a sense, the best understood is the
case when both subsystems are chaotic and of compara-
ble chaoticity. Being bipartite it differs fundamentally
from single particle models studied so far and provides a
bridge to fully many-body systems. Another recent study
of OTOC in bipartite systems is in [18]. In particular,
the operators A and B can initially be local to the two
subsystems, that is of the form OA ⊗ IB and IA ⊗ OB ,
and will therefore commute. At later times, solely due
to the interaction and entanglement generated they will
not commute and their OTOC will grow. We note that
there are several systems that could satisfy such require-
ments, including particles in a quantum dot, spin chains
wherein the operators are local over two halves of the
spins, two large coupled tops or spins. In this scenario,
the entanglement created due to the interactions drives
the OTOC growth and in particular the operator entan-
glement shows similar behavior. Thus this is the simplest
multipartite setting in which entanglement is responsible
for the OTOC growth and information scrambling.

Spectral transitions and eigenstate entanglement when
the subsystems are fully chaotic have recently been stud-
ied, these being governed by one dimensionless transi-
tion parameter in terms of which the growth of the en-
tanglement is universal [30–32]. We find that it is the
same transition parameter that is also responsible for the
OTOC growth beyond the Ehrenfest time, when both the
subsystems are chaotic. Thus the OTOC increases in a
universal manner with a time scale which maybe char-
acterized as the scrambling time (ts) at which it satu-
rates. We show that OTOC can be modeled with a ran-
dom matrix ensemble in this time domain. Before the
Ehrenfest time, the OTOC increase as e2λt till a time
∼ log(1/~) and is true only for operators with a semi-
classical limit. In contrast when the subsystems are reg-
ular and the interaction is weak, OTOC can increase as a
power law in time and as we shall argue ∼ t2, for a time
that is ∼ 1/

√
~. However, this is also strongly operator

dependent.
We consider the OTOC in the infinite temperature

limit, thus the conjectured quantum Lyapunov exponent
has no upper bound. Thus, the OTOC for two operators
A and B given in (1) is C(t) = C2(t)− C4(t), where

C2(t) = Tr
(
A(t)2B(0)2

)
, (2)

and
C4(t) = Tr (A(t)B(0)A(t)B(0)) , (3)

where C2(t) and C4(t) are the two- and four-point cor-
relations, respectively. Since the process of going for-
ward and backward in time is crucial to diagnose quan-
tum chaos, such as in studies of fidelity [33], only C4(t),
being an out-of-time ordered correlator, is sufficient to
explore chaos in quantum systems. Consider A and B
to be Hermitian operators localized to each subsystem
respectively, i.e.

A(0) = O1 ⊗ I, B(0) = I⊗O2, (4)
where Oj with j = 1, 2 are Hermitian operators. The
evolution of operator A is given by A(t) = U−tA(0)U t,
for integer times t and it is typically no longer of a ten-
sor product form and fails to commute with B(0) for
t > 0. Two different OTOC are there for bipartite sys-
tems, when the operators are localized in the same or
different subsystems. To be explicit, we define:

CAA(t) = −Tr(A(t), A(0))2,

CAB(t) = −Tr(A(t), B(0))2. (5)
For weak interactions, the growth of CAA(t) is governed
predominantly by the dynamical nature of subsystems
but for CAB(t) both local dynamics and interaction play
significant role, as it is entirely a result of subsystem en-
tanglement. If C(t) grows exponentially with time in sys-
tems with bound spectra this is an indicator of quantum
chaos. This is an equivalent to the classical Lyapunov ex-
ponent being positive in a bounded system. It may also
be pointed out that while we study this version of the
OTOC below, another possibility is to take a logarithm
before the trace, in other words to average the Lyapunov
exponents of individual state expectation values in some
complete basis.

2. OTOC for coupled quantum kicked rotors

We wish to study a convenient model for the OTOC
of bipartite systems, where each subsystem can have a
range of dynamical behavior from regular to fully chaotic.
Coupled area-preserving maps present themselves as at-
tractive models to study. The kicked rotor, or the stan-
dard map, is a well-known system that exhibits both in-
tegrability and chaos as one changes the kicking strength
parameter. We consider two interacting coupled kicked
rotors whose classical and quantum dynamics has been
studied earlier from points of view of the Arnold diffu-
sion [34, 35], interplay of chaos and entanglement [30],
higher-dimensional Hamiltonian systems [36], level spac-
ing and entanglement transitions in strongly chaotic,
weakly interacting systems [31, 32]. As each of the
standard map is studied on the torus phase-space, the
quantum dynamics is finite dimensional and the classical
dynamics is compact.
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The composite form of the Hamiltonian is given by [32]:
H = H1 ⊗ I2 + I1 ⊗H2 +H12, (6)

where Hj , with j = 1, 2, represents Hamiltonian for in-
dividual sub-system and H12 represents interaction. For
kicked rotors, we have

Hj =
1

2
p2j +

1

4π2
Kj cos(2πqj)δt

and H12 =
b

4π2
cos(2π(q1 + q2))δt, (7)

with δt =
∑∞
n=−∞ δ(t − n), and the parameter b is the

interaction. The single rotor is integrable only for van-
ishing kick strength K = 0, and there is a mixed phase
space, with a finite measure of chaotic and stable re-
gions as K increases. Although there is no rigorous
proof, it is believed that there is widespread chaos for
K � 5. While the average Lyapunov exponent is mono-
tonically increasing with K, small stable phase space
structures can arise, for example, through homoclinic
tangencies. The coupled map is considerably harder
to visualize, being a four-dimensional symplectic map
(q1, p1, q2, p2) 7→ (q′1, p

′
1, q
′
2, p
′
2). With periodic (unit pe-

riod) boundary conditions on all of these variables, the
phase-space is a 4-torus, on which the map is (i = 1, 2):

q′i = qi + p′i (mod 1), (8a)

p′i = pi +
Ki

2π
sin(2πqi)+

b

2π
sin(2π(q1 + q2)) (mod 1).

(8b)
Here qi and pi are position and momentum coordi-
nates of i-th rotor immediately after a kick and (q′i, p

′
i)

are the coordinates in phase space immediately after
the next kick.

As is well-known, the quantum dynamics of the kicked
rotors with torus boundary conditions occurs in a finite-
dimensional Hilbert space of dimension say N , so that
both position and momentum have discrete values. The
Hilbert space of two coupled rotors is the tensor product
space of dimension N2. The Floquet operator, FKj

of
individual rotors in position basis with 0 ≤ ni ≤ N − 1
is〈
n′
∣∣FKj

∣∣n〉 = 1

N
exp

(
− iN

Kj

2π
cos

(
2π

N
(n+ α)

))
(9)

×
N−1∑
m=0

exp
(
− i

π

N
(m+ β)2

)
exp

(
i
2π

N
(m+ β)(n− n′)

)
,

while the interaction Ub is a diagonal matrix with entries
given by

〈n1n2 |Ub|n′1n′2〉 = exp

(
− iN

b

2π
cos

(
2π

N
(n1+n2+2α)

))
×δn1,n′

1
δn2,n′

2
. (10)

The α and β are parity and time reversal breaking phases,
respectively, and arise from the boundary conditions for
the quantum torus. The parity is preserved for α = 0
and broken for other values. Similarly the system is time
reversal invariant for β = 0 and β = 1/2. The time evo-
lution operator for the composite system, quantizing the
coupled map in Eq. (8) is then given by

U = (FK1
⊗ FK2

)Ub. (11)
Since we have position and momentum both to be dis-
crete, it is convenient to have the observables, O1 and
O2 to be constructed from the position and momentum
translation operators Tq and Tp defined as Tqi |ni〉 =
|ni+1〉 and Tpi |ni〉 = exp(2π i(ni+α)/N)|ni〉. We choose

Oi =
1

2
(Tpi + T †pi), (12)

so that the classical limit of the observables Oi is sim-
ply cos(2πqi). We consider the following cases: the
uncoupled map is integrable (K1 = K2 = 0), has a
mixed phase-space (K1 = 0.5,K2 = 0.7), is fully chaotic
(K1 = 9,K2 = 10 and K1 = 19,K2 = 20), or one is regu-
lar and the other subsystem is chaotic (K1 = 0,K2 = 10).
We set β = 0 and α = 0.35 to have time reversal invari-
ance and broken parity in the Floquet operator.

2.1. Pre-Ehrenfest time regime and Poisson brackets

The OTOCs CAA(t) and CAB(t) with A(0) = O1 ⊗ I2
and B(0) = I1⊗O2 and U the coupled standard map from
Eq. (11), are plotted in Figs. 1 and 2 for the regular case
and in Fig. 3 for the chaotic case. We see in all figures,
except the Ki = 0 case, two time regimes, one during
which the growth is not really visible except on log-scales
and the other during which substantial growth occurs.
The time scale separating these two regimes is precisely
the Ehrenfest time. Up to the Ehrenfest time, tE , the
OTOC exhibits a power law growth for non-chaotic and
weakly chaotic cases. As shown in Fig. 2, the linear be-
havior in log–log scale confirms the power law growth.
The CAA(t) follows quite simply from the classical coun-
terpart of OTOC CAB(t) is Ccl(t) where

〈Ccl(t)〉 ≡
~2

4
〈{cos(2πq1(t)), cos(2πq2(0))}2〉 (13a)

∝ 〈
(
∂q1(t)

p2(0)

)2

〉, (13b)

where 〈.〉 represents the average over phase space points.
Taking the integrable Ki = 0 case, the simplest situa-

tion is also zero interaction, which implies that the sys-
tem is just two uncoupled free rotors. As for free motion
we have [q̂(t), q̂(0)] ∼ t, we expect and find a quadratic
growth of OTOC when the operators are in the same
subspace, as shown in Fig. 1, however when the opera-
tors are in different subspaces, small interactions ∼ 1/N
give rise to surprisingly large power laws ∼ t5, and this
persists for higher values of the coupling constant b. The
anomalously large power law persists when the individual
rotors are near-integrable and the interaction is small, as
shown in Fig. 2. With growing interaction there is a tran-
sition to chaos and an approximately exponential growth
is obtained. The near integrable regime of K1 = 0.5
and K2 = 0.7 is qualitatively similar with a power law
∼ t2.1 growth of CAA(t) for b = 2/N and somewhat sur-
prisingly an exponential growth is not obtained even at
b = 1.7 when the spacing distribution is already Wigner,
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Fig. 1. The OTOC when the noninteracting systems
are integrable, K1 = K2 = 0 and the operators are in
the same subspace (CAA, (a)) and in different subspaces
(CAB , (b)). Shown are plots in the log–log scale and we
see a power law ∼ t2 that holds approximately in the
first case and a law ∼ t5 in the second.

indicating the possibility that the OTOC are more sen-
sitive to small regular regions than measures such as the
nearest neighbor spacing statistics.

In contrast the case when both subsystems are strongly
chaotic and the coupling is weak, the OTOC CAB(t)
clearly shows two regimes, one wherein there is an ini-
tial exponential growth and then a gradual saturation as
shown in Fig. 3. For strongly chaotic case, the OTOC
shows an exponential growth till the Ehrenfest time as
CAB(t < tEF ) ∝ b2 exp(2λLt). The behavior is clearly
observed from plot for OTOC in inset of Fig. 3 in log–
linear scale for strongly chaotic case. The dynamics is
mainly governed by the sub-system chaos and is not af-
fected by the interaction. For a chaotic system, if classi-
cal Lyapunov exponent is λcl, then we get

Ccl(t) ∝ b2 exp(2λclt). (14)
We numerically compare the quantum Lyapunov expo-
nent from the OTOC computation, λL with the classical
exponent λcl. The classical Lyapunov exponent is calcu-
lated through the Poisson bracket. The exponent for a
few cases are shown in Table I. It is seen that the agree-
ment between λcl and λL generally gets better for larger
N and is quite good.

Fig. 2. CAA(t) and CAB(t) for the weakly chaotic case
for several values of interaction strengths. The plots are
shown for K1 = 0.5,K2 = 0.7. The sub-system dimen-
sion, N = 64 is considered here. The figures indicates
that for small b there is a power law growth ∼ t5.4.

Fig. 3. C(t) vs. t for coupled kicked rotor for strongly
chaotic case with various values of interactions. The
sub-system size N is set to 256. The interaction, b,
scales as 1/N . The kick parameters are K1 = 9 and
K2 = 10. Inset corresponds to the same plot in log–
linear scale. The solid lines are for CAB(t), while the
dashed ones are for CAA(t).
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TABLE I

The comparison of the quantum and classical Lyapunov
exponents λL and λcl for various combinations of N
and Ki. The exponent is obtained by taking average for
1/N ≤ b ≤ 5/N .

K1 = 9, K2 = 10

N = 64 N = 256 classical
tEF ≈ 3 tEF ≈ 4

2λL = 3.91± 0.01 2λL = 4.00± 0.02 2λcl = 3.91

K1 = 19, K2 = 20

N = 64 N = 256 classical
tEF ≈ 2 tEF ≈ 3

2λL = 4.98± 0.05 2λL = 5.33± 0.01 2λcl = 5.34

K1 = 20, K2 = 21

N = 64 N = 256 classical
tEF ≈ 2 tEF ≈ 3

2λL = 5.030± 0.06 2λL = 5.41±O(10−4) 2λcl = 5.44

The Ehrenfest time shown in the table is estimated
from the fact that a cell of size ~ will take time tEF to
spread over all the phase space, i.e., ~ exp(λcltEF ) ≈ 1 or
tEF = |log(~)| /λcl = log(N)/λcl. We note that the in-
teractions we have used are classically negligible, as they
scale as b ∼ 1/N , but is quantum mechanically large for
the case when the subsystems are chaotic. It is known
that there is a transition to global quantum chaos, and re-
action and movement time (RMT) behavior in the case
for b ∼ 1/N2 [32]. Thus while these are small inter-
actions, there is already global quantum chaos and, for
example, the eigenvalue statistics will be that of RMT.

We also comment that the OTOC CAA(t) when both
operators are in the same subspace is very different and
is shown with dashed lines in Fig. 3. While there is
still an exponential initial growth of the OTOC with
almost identical Lyapunov exponent, there is practi-
cally saturation at the Ehrenfest time. Indeed, we find
that this OTOC is almost identical to that obtained
with one a single kicked rotor and differs only in the
saturation value.

Finally, we present preliminary results for the intrigu-
ing case K1 = 0 and K2 = 10, that is one of the sub-
systems is integrable and the other is fully chaotic. For
weak interactions, we expect the second subsystem to
act as an agent of decoherence and destroy for example
quantum phenomena such as fractional revivals that oc-
cur in the K1 = 0 subsystem. To visualize this we study
the evolution of the K1 = 0 subsystem Husimi functions,
starting from a coherent state localized at (z10, z20) =
(q10, p10, q20, p20). We find |ψ(n)〉 = Un|z10〉|z20〉 and
the subsystem state ρ1(n) = Tr2(|ψ(n)〉〈ψ(n)|) and its
Husimi representation 〈q1p1|ρ1(n)|q1p1〉, where |z1〉 =
|q1p1〉 is a coherent state, a minimum uncertainty state
centered at z1 = (q1, p1). Roughly speaking it is the
shadow of the state in subsystem 1. This is shown in
Fig. 4 for 3 values of the interaction b, on the phase-space
unit square. When b = 0 as in Fig. 4a, the system is

Fig. 4. The Husimi, or coherent state, representation
of the subsystem state in the K1 = 0 rotor subspace.
Shown are the states at times 0, 2, 4, 6, 8, 12, 14, 16, 18,
20, with N = 64 in the unit (q1, p1) square or torus. (a)
K1 = 0, K2 = 10, b = 0, (b) K1 = 0, K2 = 10, b = 0.06,
(c) K1 = 0, K2 = 10, b = 0.4. Notice the fractional
revivals visible at zero interaction, getting smeared with
increased interaction.

simply a free particle on a ring, and there is the phenom-
ena of fractional revivals when the density forms itself
into several spatially localized “cat states” like patterns.
There is an initial time, the Ehrenfest time, which scales
as
√
N before which the quantum interference effects are

negligible. When the interactions are turned on the be-
haviour in the pre-Ehrenfest time is not changed, but in
the post-Ehrenfest time, the coherent interference effects
giving rise to revivals get destroyed.

These have their imprints on the OTOCs of observ-
ables as seen in Fig. 5. We notice from Fig. 5a that if the
interactions are small b ∼ 1/N , the OTOCs CAA, when
the observables are in the “regular” subspace are approx-
imately growing as t2 and are practically independent
of the interaction, and do not seem to show differences
at the Ehrenfest time. With increasing interaction the
OTOC grow much faster and saturate at the Ehrenfest
time, marking the onset of decoherence. Not shown is
the case when both the operators are in the chaotic sub-
system, when the growth is exponential. Thus the inter-
esting case of CAB(t) is shown in Fig. 5b, where we now
see that even small interactions can be distinguished due
to the dependence on b2 as before. However for small
interactions, the growth is neither a clear exponential
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Fig. 5. The OTOC when observables are in the same (regular, K1 = 0) subspace CAA(t) (a). The OTOC when
observables are in different subspaces CAB(t) (b). The OTOCs for the case when K1 = 0 and K2 = 10. Shown in each
case are the same data in linear–linear, linear–log, and log–log plots.

nor a power-law one. With increased interaction, the
OTOC is smaller than the chaotic–chaotic case but the
growth rate is nearly exponential. The saturation time
also decreases with increasing interaction indicating the
decrease in the Ehrenfest time. We notice that these pre-
liminary studies throw up several interesting questions,
including the very definition of Ehrenfest time scales in
such multipartite systems.

3. An RMT model and the post-Ehrenfest
regime in the chaotic–chaotic case

While the pre-Ehrenfest regime is interesting in many
cases, especially when there is a mixture of regular and
chaotic subsystems, the post-Ehrenfest time is less un-
derstood. See [13, 17] for recent works concerning this.
In this section we summarize a recent work [37] that pro-
vides a complete theory for the case when both subsys-
tems are chaotic. As seen in Fig. 3, the pre-Ehrenfest
time is marked by an exponential growth which is essen-
tially coming from classical Poisson brackets. However,
this correspondence breaks down if the operators them-
selves do not have a smooth classical limit. It was seen
that the observables which have no classical counterpart
skip the Lyapunov regime and start relaxing exponen-
tially to the saturation value. The post-Ehrenfest regime
of smooth operators is also exactly of the same kind and
is universal in the sense that the rate does not depend
on the characteristics of sub-systems. This is reasonable
as a smooth operator has been scrambled sufficiently by
the Ehrenfest time to resemble generic operators.

While the relaxation to saturation is via a power-law
for integrable and weakly-chaotic systems it is exponen-
tial for fully chaotic systems. In the last case, we de-
termine the relaxation rate by replacing the subsystem
dynamics with random unitary matrices that are inde-
pendent at each time step. This leads to the OTOC
estimate

CAB(t > tEF ) = C∞

[
1− γ(b)e−µ(b)(t−tEF )

]
, (15)

where µ(b) is the relaxation rate that depends on the
exact nature of the interaction in the Hamiltonian. For
coupled kicked rotors the relaxation rate is given by

µ(b) = ln

∣∣∣∣J0(Nb2π

)∣∣∣∣−4 ≈ N2b2

4π2
, (16)

where J0(x) is the Bessel function of the first kind.
This implies that ln(C∞−C(t)) ∝ −µ(b)t and we show

in Fig. 6 the relaxation rate of quantum kicked rotor and
its comparison with Eq. (16). We observe an excellent
qualitative agreement, after the Ehrenfest time.

To model the evolution due to the propagator in
Eq. (11), as the subsystem dynamics is chaotic, the
operators Fj maybe considered to be chosen from the
circular ensemble of random matrices, that is
F1,F2 ≡ COE or CUE, (17)

where the circular orthogonal/unitary ensemble
(COE/CUE) applies when there is/is no time-reversal
symmetry. The interaction Ub is diagonal in the case
of the standard maps in the position representation.
We therefore model a random interaction as a diagonal
unitary random matrix, which is just a diagonal matrix
of pure phases. We take these N2 phases to be of the
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Fig. 6. log(C∞ − CAB(t)) vs. t for the coupled kicked
rotor and corresponding RMT model. The subsystem
size, N = 64, is considered here. Note that the RMT
results (dashed lines) are shifted arbitrarily for an easy
comparison with the coupled kicked rotor’s results. The
rate µ vs. interaction Nb and ε.

form exp(iεξ) where ξ ∈ [−π, π) is uniformly random.
The strength of the interaction is determined by ε. If
ε = 0, this is noninteracting and the case ε = 1 is one of
maximal interaction. Calling such a diagonal matrix Uε,
we model the matrix power U t by

U (t) =

t∏
j=1

(F1j ⊗F2j)Uεj , (18)

where the index j implies that at each step we choose
different locals as well as interaction matrices Uε. The
entire physics then rests on the strength of the interac-
tion ε and the observables. We expect such a model to
work well if the interaction is not so weak that it does
not mix unperturbed levels at all, which in the case of
kicked rotors would be b� 1/N2.

To derive an expression for the OTOC CAB(t), we con-
sider instead of U t the quantity U (t). We then average
over the F1j , F2j to get [37] the two-point correlator

C2(t) ≈ C2(t) = C∞ = Tr(O2
1)Tr(O2

1) (19)
and the 4-point out-of time-ordered correlator

C4(t) ≈ C4(t) = sinc4t(πε)Tr(O2
1)Tr(O2

2), (20)

which leads to the RMT model OTOC:
CAB(t) = Tr(O2

1)Tr(O2
2)
[
1− sinc4(t−1)(πε)

]
, t ≥ 1.

(21)
Here we have taken into account a detail that is essential
for the observables O which we take are diagonal in the
same basis as the interaction is. The OTOC of the ran-
dom matrix model therefore approaches saturation C∞
exponentially with a rate µRMT (ε) = −4 ln |sinc(πε)| ≈
2π2ε2/3 that is universal in the sense that it is inde-
pendent of the choice of operators and depends only
on the interaction. We see clearly that the two-point
part of the OTOC C2(t) contains essentially no interest-
ing behaviour being approximately a constant, while the
4-point correlator C4(t) contains all the non-trivial in-
formation. The random matrix model can be used for
non-random interactions with diagonal matrix elements
of the form exp(− iεVmn), where V is the interaction po-
tential or Hamiltonian. This leads to the rate

µ(ε) = −4 ln

∣∣∣∣∣∣
1∫

0

dξ1dξ2 e
− i εV (ξ1,ξ2)t/h

∣∣∣∣∣∣ , (22)

and for the coupled standard map with V = Vb =
cos(2π(q1 + q2))/4π

2 the relaxation rate is same as in
Eq. (16). Figure 6 illustrates both the coupled standard
map and the RMT models and also contains a compari-
son of the numerically obtained rates with the estimate
µ(ε). It is seen that the estimate breaks down for large
coupling and a more complete theory is needed to ac-
count for the rate in these cases where the RMT does an
overestimation.

4. Summary and outlook

We have studied OTOCs in a bipartite system of two
coupled standard maps. It is a rich model that allows
for us to study the case when the subsystems are both
chaotic, or when one is chaotic and the other regular
and when both are regular. We have presented essen-
tially numerical and preliminary results for two kinds
of OTOCs in these systems. While power laws under-
standably dominate the growth of the OTOC in regular–
regular systems, the case of regular–chaotic systems is
unclear. This is an interesting case as it could model de-
cohering or noisy regular systems. The case of chaotic–
chaotic systems are described by random matrix theory
and appropriate models allow us to derive a universal ex-
ponential decay in the post-Ehrenfest regime. The uni-
versality is in the form of the decay and the rates being
independent of the observables used in the OTOC. The
Ehrenfest time itself needs to be more carefully studied
in the case of weakly coupled systems as they could vary
dramatically between the subsystems themselves. While
we have restricted ourselves to the simplest many-body
situation, naturally extensions to tripartite and multipar-
tite systems is interesting and we hope that our study will
add in some way to the vast literature that is emerging
on the many facets of the OTOC.
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