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We present a microwave realization of a reflective topological limiter based on an explicit self-induced violation
of a charge-conjugation (CT ) symmetry. The starting point is a bipartite structure created by coupled dielectric
resonators with a topological defect placed at the center and two lossy resonators placed on the neighboring sites
of the defect. This defect supports a resonant mode if the CT -symmetry is present, while it is suppressed once
the symmetry is violated due to permittivity changes of the defect resonator associated with high irradiances of
the incident radiation. This destruction leads to a suppression of transmittance and a subsequent increase of
the reflectance while the absorption is also suppressed.
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1. Introduction

Limiters are an important ingredient of modern
technologies, where communication via electromagnetic
waves requires compact devices which, in turn, lead to
a more complex electromagnetic environment. Testa-
ments of such complexity are developments in Wi-Fi,
Bluetooth, mobiles as well as near field communi-
cations (NFC) spanning frequency ranges from MHz
(radiowaves) to several tens of GHz (microwaves).
With the introduction of the Internet of Things (IoT) and
5G the need for next generation limiters will become even
more pronounced [1]. Limiters should protect the com-
munication devices from detrimental high incident pow-
ers or fluence. There are different types of limiters rang-
ing from diode limiters [2], gas-tube limiters based on
generating plasmas [3, 4], or limiters based on supercon-
ducting technologies [5, 6], each with their advantages
and disadvantages. Recently the idea of using topologi-
cal structures for the realization of a new generation of
resilient limiters has been proposed [7, 8] and already ex-
perimentally studied in the microwave regime [9]. We will
present here a microwave realization of a reflective limiter
based on the CT -symmetry breaking in a bipartite struc-
ture which has been proposed in Ref. [10]. As opposed to
previous proposals, the topological reflective limiter is ro-
bust against fabricational errors, while at the same time
is resilient to high power incident radiation that might
lead to a destruction of existing limiting schemes.
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The structure of this paper is as follows. In the next
section we present the experimental setup including de-
tails on the dielectric resonators, their choices, and prepa-
ration. Section 3 presents the experimental results on
the limiter itself, especially its transmittance, reflectance,
and absorption properties.

2. Experimental setup and CT -breaking

The experiment is based on evanescently coupled
dielectric resonators sandwiched between two metallic
plates. For details on the coupling mechanism and its de-
scription we refer to Refs. [11, 12]. These resonators have
already been used in linear chain setups to demonstrate
topological defects [9, 13], the Dirac oscillators [14], or
chiral ensembles [15] as well as in two-dimensional struc-
tures like graphene [11, 12, 16] or the Lieb lattices [17].
Of course, in actual limiters one has to incorporate non-
linear mechanisms that allow for a distinction between
low and high incident power — the latter turning the lim-
iter to its “off” state — but for a proof of principle exper-
iment it is sufficient to perform the permittivity variation
parametrically, as carried out here. Non-linearities can
be implemented in this microwave setup [18] and can be
treated theoretically and numerically [19].

Figure 1 shows a photograph of the realized topological
limiter using in total 8 dimers with intra-dimer distances
of d1 = 11 mm (coupling t1 = 41.4 MHz) and inter-
dimer distances d2 = 13 mm (coupling t2 = 21.2 MHz)
with an average eigenfrequency of the resonators of
ν0 = 6.069 GHz (see also Appendix A). At the center
of the chain a topological defect is placed by repeating
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Fig. 1. The experimental setup showing a 4–D–4 dimer
chain with curled kink antennas coupled to the utmost
left and right resonators. The neighboring resonators
of the topological defect (nd = 9) have the additional
absorbing elastomers on top of them.

an inter-dimer distance d2 generating a 4–D–4 structure.
Since the central resonator, and therefore the defect is
between two topologically distinct regions, it results in
a topologically protected bound state [20], which occurs
exactly at ν0, the eigenfrequency of the defect resonator,
in the spectra. This mode, also called zero-mode is lo-
calized at the defect (nd). As the eigenfrequency of the
defect resonator will be varied parametrically later on
we denote it by νd. Note that in actual implementa-
tions of the setup of Fig. 1, the intensity of the inci-
dent radiation will be responsible for the variations in νd.
For example, in the optical framework, the value of νd will
change due to a Kerr non-linearity. In the microwave do-
main we can change νd by inductively coupling the defect
resonator with a non-linear circuit. On the leftmost and
rightmost resonators a curled kinked antenna is placed
to guarantee strong coupling to the system (see also
Fig. 8 in Appendix A). Finally, we have incorporated
large Ohmic losses γnb to the two resonators on the left
and right of the defect. The loss has been incorporated
by placing strong absorbing material on top of the surface
of these resonators (see also Fig. 12 in Appendix B).

The infinite dimer structure generates a band-gap
given by ν0−|t1− t2| < ν < ν0 + |t1− t2|. For the chosen
setup this corresponds to 6.049 GHz < ν < 6.089 GHz.
The band structures can be seen in Fig. 2, where
by increasing the number of dimers N at each
side of the defect the band gap is approaching
6.060 GHz < ν < 6.115 GHz. The shift of the gap is
due to the fact that at very small distances the pres-
ence of the second resonator gives rise to an additional
shift of the bare frequency [15]. This effect has not been
taken into account in the theoretical description. While
the gap becomes better and better defined for increas-
ing number of dimers the defect state gets less and less
pronounced due to the increase of the time-delay leading
to an enhancement of the absorbed energy in the de-
fect resonator, as even without any additional absorbing
material the resonator has a non-negligible absorption
(γ = 1.8 MHz). The N = 4 value seems to be a reason-
able compromise to have a well established defect reso-
nance and a well defined band gap. Thus we will concen-
trate on the 4–D–4 dimer setup for the limiter.

In case of no absorption, the system is time-reversal
symmetric, thus the Hamiltonian H commutes with
the time-reversal operator T , HT = T H, where T 2 = 1.
Furthermore, as the lattice has a bipartite structure, i.e.,

Fig. 2. Measured reflection |S11| with the strongly cou-
pled antennas for defect dimer chains with different to-
tal numbers N of dimers and a defect in the center
(N–D–N : N -dimers–defect–N -dimers).

the couplings alternate between small and large values,
and next-nearest neighbor couplings are negligible, the ef-
fective Hamiltonian of the system commutes with the chi-
ral operator [15]. This can be easily seen if one writes
the Hamiltonian in the position basis writing first the odd
resonators and then the even ones. The Hamiltonian for
such a situation may be written as

H = ν0 · 1M +

(
0 A

A† 0

)
, (1)

where the diagonal blocks belong to the two subsystems,
and the off-diagonal blocks describe the interaction,M is
the number of resonators and 1M is the M -dimensional
diagonal matrix. From the above discussion it becomes
evident that the chiral symmetry is protected when
all resonators have the same eigenfrequency ν0. Thus,
there exists a chiral operator C, which is anticommuting
with H, HC = −CH, with C2 = 1 [21–24]. In total
the Hamiltonian of this system possesses an anti-unitary
charge-conjugation symmetry [20, 25, 26]:
{CT ,H} ≡ CT H+HCT = 0. (2)

This results in pairs of eigenfrequencies ν0 +νm, ν0−ν∗m.
Due to this symmetry the unpaired eigenmode at ν0 is
stabilized and in the limit of N →∞ its wavefunction is
exponentially localized and given by [13, 20]:

Ψn ∼

{
1√
ξ

exp(− |n−nd|
ξ ) for n odd,

0 for n even,
(3)

where ξ = 1/ ln(t1/t2) is the so-called localization length
of the mode [27]. If we include now a global absorption,
i.e., the same γ for all resonators the mode will not change
apart from acquiring a width. The additional absorption
γnb introduced on the neighboring sites of the defect will
destroy the CT -symmetry of the system itself, but the de-
fect mode is not affected and keeps its structure. In con-
trast, varying the eigenfrequency νd 6= ν0 of the defect
resonator will break the CT -symmetry of the mode lead-
ing to non vanishing components Ψn 6= 0 for n even [10].

Equation (3) is depicted in Fig. 3 as open circles.
The blue solid line is the experimental eigenfunction
obtained by measuring the reflection of the scanning
antenna (loop antenna, see Fig. 8 in Appendix A) above
each resonator. We can see the staggered structure of
the measured wave function. Even though the values
for even resonators are not zero, still they are small
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Fig. 3. Blue solid line: measured state wave function
Ψ for the unperturbed chain (νd = 6.069 GHz, see
Eq. (3)). Dashed orange line: chain with a frequency-
shift at the central resonator (νd = 6.092 GHz). Open
circles: eigenfunction for infinite chain. All are normal-
ized to |Ψ(nd)|S = 1 at the defect.

(|Ψn| < 10−4|) close to the defect resonator. This devia-
tion from the theoretical expression Eq. (3) comes mainly
from the variation of the eigenfrequencies of the res-
onators. The increase of the wavefunction at even sites
close to the end of the structure is due to finite-size effects
and by the fact that the system is coupled to leads. As
the field intensity is small on the neighboring sites of the
defect, additional absorption at these resonators will only
weakly affect the defect state. Thus in the CT -symmetric
case, corresponding to νd = ν0, the structure will still
support a resonant defect mode with high transmittiv-
ity. If we now explicitly violate the CT -symmetry by
modifying the resonant frequency of the defect resonator,
Eq. (3) will be perturbed and the wave function will ac-
quire weight on the even sites. As a result, the reso-
nant defect mode will experience Ohmic losses due to
its engagement with the two lossy resonators at the left
and right of the defect. Consequently, the Q-factor of
the resonant defect mode will deteriorate leading to its
destruction via a transition from an under-damping to
an over-damping regime. Such transition is accompanied
by a suppression of the transmittance and an increase to
(near-)unity values of the reflectance [10]. The orange
dashed line shown in Fig. 3 corresponds to a frequency
shift of the defect resonator of ∆ν = νd − ν0 = 23 MHz
and an increase of the weight at the neighboring sites of
2 orders of magnitude is visible.

In the next section we will present the experimental
results when placing additional absorption on the neigh-
boring sites on the transmittance and the absorption in
the limiter.

3. Experimental results
on the CT -breaking limiter

Next, we present the experimental results for the trans-
port properties of the CT -limiter in case that the two
lossy resonators are placed on the left and right side
of the defect resonator. For a detailed description of
the preparation and characterization of the absorbing
resonators see Appendix B. In Fig. 4 the reflectance
R = |S11|2, transmittance T = |S21|2, and absorption
A = 1−R−T are shown for the 4–D–4 limiter for differ-
ent frequency shifts of the defect resonators (νd) and for

Fig. 4. Reflectance R, transmittance T , and absorp-
tion A = 1 − R − T for the 4–D–4 limiter with topo-
logical defect at n = 9 for different frequency shifts of
the defect resonators (νd) and for different absorption
strength γnb of the neighboring resonators (n = 8 and
10). The color corresponds to different absorption val-
ues (blue: γnb = 21 MHz; red: γnb = 175 MHz) and dif-
ferent frequency-shifts at the central resonator are indi-
cated by the line-style (solid: νd = 6.069 GHz (no shift);
dashed: νd = 6.080 GHz; dotted: νd = 6.092 GHz).

Fig. 5. As in Fig. 4 but a zoom to the gap region.

different absorption strength γnb of the lossy resonators.
For the highest absorption value (γnb = 175 MHz, red
lines) the background reflectance in the gap is reduced
due to the additional strong absorption felt by the res-
onances within the band. To detail the behavior of
the resonance we present in Fig. 5 only the frequency
range of the gap. In case of the transmittance, we ob-
serve the reduction of the resonances with increasing fre-
quency shift (Tres=0.066, 0.059, 0.053 for γnb = 21 MHz
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Fig. 6. Transmittance, reflectance and absorption vs.
percentile of the perturbation on the defect resonator
nd = 11 for a 5–D–5 system.

(blue lines) and 0.029, 0.024, 0.009 for γnb = 175 MHz
(red lines)), corresponding to a stronger deviation from
the CT -symmetry. The effect is stronger if the absorp-
tion strength is higher but still the transmittance is of the
same order of magnitude. For the measured reflectance
of the limiter the discussion is not as evident as for the
transmittance. The resonance heights, widths and fre-
quencies reveal a similar structure in the reflectance as in
the transmittance but the baseline in the reflectance for
the larger γnb = 175 MHz is roughly 0.04 smaller thus re-
ducing the minimal reflectance compared to the smaller
value γnb = 21 MHz. Additionally, once approaching
the band the baseline is curved, thus leading to a reduc-
tion of the increase of the reflectance with increasing νd.
As the absorption is mainly displaying the features of
the reflectance the main problem resides for it as well.

The experimental findings are significantly less pro-
nounced than predicted by Ref. [10]. We attribute this
mainly to the losses on the defect resonator and calcu-
lated numerically the transmittance, reflectance and ab-
sorption of a 5–D–5 limiter with lossless resonators every-
where, but on the neighboring sites of the defect, where
we assumed losses of γnb = 500 MHz. The couplings used
are t1 = 50 MHz and t2 = 10 MHz, thus the band-gap
is broader in this case. For the calculation the scatter-
ing matrix formalism is used, mimicking each antenna
coupled to the 5–D–5 limiter by a one-dimensional semi-
infinite tight-binding lattice (for the efficiency of this
modeling see [10]).

In Fig. 6, we plot maximal transmittance T , mini-
mal reflectance R, and maximal absorption A within
the band-gap, as a function of the relative changes of νd.
We observe a drop of more than 10 orders of magni-
tude in transmittance and about 4 orders of magnitude
in absorption for large perturbation values equal to a few

percentile points of the band-gap, much smaller than
the ones implemented in the experiment. Thus, we con-
clude that the problem in the performance of the exper-
imental setup is associated with the moderate Q-factor
and associated losses of the resonators used in the exper-
iment and predominantly of the defect resonator where
the losses are amplified due to the exponentially large
values of the field at n = nd (see Eq. (3)).

Acknowledgments

T.K. acknowledges partial support from the Office
of Naval Research via grants N00014-16-1-2803 and
N00014-19-1-2480 and from DARPA NLM program via
grant No. HR00111820042.

Appendix A: Single resonator
and experimental precision

Here we present details on the single resonator and
the experimental precision of the measurements.

To derive an analytic expression for the electric and
magnetic field we assume a dielectric cylinder with an in-
dex of refraction n and height h sandwiched between
two perfectly conducting metallic plates both touching
the resonator. Then the first transverse electric reso-
nance TE1, i.e., magnetic field pointing in the z direc-
tion, reads

B = Bz(x, y, z)e iωtez = ϕB (x, y) sin
(π
h
z
)

e iωtez.

(A1)
ϕB can be deduced from the 2-dimensional Helmholtz
equation in polar-coordinates(

∆polar + k2⊥
)
ϕB (r, θ) = 0 (A2)

with k⊥ =
√
nω2/c2 − k2z =

√
k2 − k2z , where kz = π

h
the corresponding wave number in z-direction. For the
used height of h = 12 mm, an index of refraction of n ≈ 6
for the resonators and the used frequency around 6 GHz,
the wave number k⊥ inside the resonator (r < rD) is real,
but outside (r > rD) it is purely imaginary, leading to
evanescent fields, and therefore to an evanescent cou-
pling between the resonators. Taking into account the
continuity-condition for the field at the resonator–air in-
terface we find

B (r, z) = (0, 0, Bz) ={
B0 sin πz

h J0(k⊥r)ez for r < rD,

αB0 sin πz
h K0(γr)ez for r > rD,

(A3)

where r is the distance from the center of the resonator,
rD is the radius of the resonator,

k⊥ =

√(
2πν0n

c0

)2

−
(π
h

)2
,

and

γ =

√(π
h

)2
−
(

2πν0
c0

)2

.
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Fig. 7. The electric (red solid line) and magnetic (blue
solid line) field are sketched for a dielectric cylindrical
resonator (shaded area).

Fig. 8. (a) Loop antenna positioned on top of the res-
onator to couple to the magnetic field. (b) Curled
kinked antenna to guarantee strong coupling to the elec-
tric field. (c) Small kink antenna gives rise to weak
coupling to the electric field of the resonator.

J0 and K0 are Bessel functions and B0 and α are con-
stants, where α is to be determined by the continuity
equation at the surface of the resonator.

The corresponding electrical field E (r, t) = E (r) e iωt

with harmonic time dependence is thus given by

E (r, z) ≈

{
E0 sin πz

h J1(k⊥r)eθ for r < rD,

αE0 sin πz
h K1(γr)eθ for r > rD,

(A4)

with E0 = − iµ0B0c0
2πν0

.
The derived field intensities for the electric and mag-

netic field intensities are plotted in Fig. 7. One can see
that the magnetic field has its maximum at the center
of the resonator, whereas the electric field is maximal
at the edge of the resonator. The energy is well local-
ized inside of the resonator while outside the fields are
decreasing fast with increasing distance from the center.
This is an important property in order to be able to de-
scribe the system with the tight-binding formalism. Even
though the experimental setup has a gap between the top
plate and the resonator the essential description is still
valid mainly modifying the existence of several evanes-
cent modes outside. For details see Ref. [16].

From the structure of the field the choice of dif-
ferent antennas becomes evident. In Fig. 8 different
types of antennas, which have been used, are shown.
The curled kinked excitation antenna situated roughly
at half the height of the resonators and curling around
half the resonator is a good choice to give rise to strong
coupling. Additionally, the scanning antenna, a loop an-
tenna coupling to the magnetic field, is optimal to get
information of B0 which is sufficient to obtain the field
in the xy-plane.

Fig. 9. Measured reflectance (blue solid line) show-
ing the TE1 resonance of the dielectric resonator at
around 6.069 GHz. The dashed line corresponds
to a Lorentzian fit including a linear background
(see Eq. (A5)). The inset shows the experimental setup
using a weakly coupled kink antenna for this measure-
ment.

Figure 9 shows the reflectance |S11|2 as a function of
frequency. A resonance is found around 6.069 GHz which
is perfectly described by a Lorentzian. The fit is tak-
ing into account the background via a complex linear
function

S11 = 1− a

ν − (ν0 − iγ/2)
+ c1ν + c2, (A5)

where ν0 is the eigenfrequency of the resonator and γ its
width. c1 and c2 are complex constants. The fit shown
in Fig. 9 gives ν0 = 6.069 GHz and γ = 1.8 MHz.
To generate a dimer chain we need that the eigenfrequen-
cies of the resonators are sufficiently close, i.e., within γ.
To verify this we performed several test measurements.

First of all, we labeled all resonators (see Fig. 10a,) and
measured the reflection S11 and fitted them by a complex
Lorentzian. In Fig. 11 we present the found resonance
frequencies and widths. We choose the resonators, which
lie within a 2 MHz wide frequency window corresponding
to the resonance width found of about 1.8 MHz.

Next we repeated measurements where we lift the top
plate (see Fig. 10b) and place it again at the same posi-
tion above the resonator. This gave rise to a variation of
0.05 MHz of the resonance far below the fluctuation al-
ready present. Now we placed the same resonator several
times at the same position using a lift-able down-pipe at
the end of the movable arm (see Fig. 10c). The arm is
controlled by a high precision xy-stage leading to a posi-
tion error of less than 0.1 mm. The resonators are addi-
tionally pushed down using a stick with a rubber patch
at its end. The variation is now of the order of 0.35 MHz
but still less than the resonance width. Overall the vari-
ation of the eigenfrequencies due to the chosen resonator,
its placement, and the positioning of the top plate is suf-
ficiently small to keep the topological structure necessary
for the operation of the limiter intact.
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Fig. 10. (a) Photograph of the labelled resonators.
(b) Aluminum top plate placed over a single resonator
with a distance of 12 mm. (c) Liftable downpipe at
the end of the movable arm used to precisely place the
resonators.

Fig. 11. Eigenfrequency and width of the resonances
measured for each resonator.

As one can see from Fig. 11, it is easily possible to
perform a perturbation of the eigenfrequency of the de-
fect resonator by an appropriate choice of the res-
onator. For the perturbed resonators at the defect site

we choose later resonator no. 497 with an eigenfrequency
of ν0 = 6.092 GHz and no. 10 with an eigenfrequency of
ν0 = 6.080 GHz both not inside the frequency window
presented in Fig. 9.

Furthermore, we need two absorbing resonators next to
the topological defect. This will be described in the fol-
lowing section.

Appendix B: Absorbing resonators

The limiter is based on breaking the CT -symmetry by
shifting the resonance frequency of the defect resonator.
To finally reduce the transmittance this frequency shift
needs to be transformed into an absorption which gives
finally rise to the enhanced reflectance. This absorption
is induced by adding absorbing material to the resonators
neighboring the topological defect. On the one hand side,
the resonance frequency of these resonators need to stay
at the same frequency but they should show a strongly
enhanced width.

Adding the absorbing material will change the eigen-
frequency of the resonator. This needs to be com-
pensated by choosing a resonator which has the cor-
responding eigenfrequency. We use here two different
materials to enhance the absorption, either elastomer

Fig. 12. (left) Photograph of the two resonators with
elastomer absorber patches glued on top. (right) Photo-
graph of the two resonators with a conductive graphite
layer sprayed on top.

Fig. 13. Reflectance measurements of the absorbing
resonators shown in Fig. 12. (top) Resonance for the
two resonators with elastomer patches. (bottom) Reso-
nance for the two resonators with graphite layer.
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TABLE I

Resonance frequencies and width for the different kind of
resonators used.

No. Absorber ν0 [GHz] γ [MHz]
373 no 6.069 1.8
269 elastomer 6.069 21
440 elastomer 6.069 20
101 graphite 6.054 180
397 graphite 6.056 170
10 no 6.080 1.8
497 no 6.092 1.8

patches, which reduces the eigenfrequency, or graphite
spray, which increases the eigenfrequency (see Fig. 12).
In Fig. 13 reflectance measurements for these four res-
onators are shown.

To perform a fit for the two graphite layer resonators
we had to subtract the reflections measurements when
no resonator was present. For all four resonators the
eigenfrequencies are close to the 6.069 GHz of the res-
onators without absorption compared to their width.
Details on the resonance frequencies and width are shown
in Table I. By means of the absorbing material we can
rise the resonance width by up-to a factor of 100.
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