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Motivated by recent interest in the zeroes of S-matrix entries in the complex energy plane, the Heidelberg
model of resonance scattering is used to introduce the notion of reflection time difference. As is shown, it plays
the same role for the zeroes as the Wigner time delay plays for the S-matrix poles.
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1. Introduction

The phenomenon of chaotic resonance scattering of
quantum waves (or their classical analogues) has at-
tracted considerable theoretical and experimental inter-
est for the last three decades, see e.g. articles in [1] and
recent reviews [2–5]. The resonances manifest themselves
via fluctuating structures in scattering observables, and
understanding their statistical properties as completely
as possible remains an important task.

2. Model

The main object in such an approach is the energy-
dependent M × M random unitary scattering matrix
S(λ), S†(λ)S(λ) = 1M which relates amplitudes of in-
coming and outgoing waves at a given value of the spec-
tral parameter (energy) λ. Here the integerM stands for
the number of open channels at a given value of energy,
the dagger denotes the Hermitian conjugation and 1M
is the M ×M identity matrix. As is well-known, statis-
tics of fluctuations of the scattering observables over an
energy interval comparable with a typical separation ∆
between positions of the resonances can be most success-
fully achieved in the framework of the so called “Hei-
delberg approach” going back to the pioneering work [6],
and reviewed from different perspectives in [7–9]. In such
an approach the resonance part of the S-matrix describ-
ing N � M interacting resonances is expressed via the
Cayley transform in terms of the resolvent of the Hamil-
tonian H representing the closed counterpart of the scat-
tering system, and which is assumed to be modelled by
a N ×N matrix HN . Namely

S(λ) =
1M − iK

1M + iK
, with K = W† 1

λ1N −HN
W, (1)

where W is the N × M matrix containing the cou-
plings between the channels and the scattering domain.
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Such couplings are assumed to be energy independent in
the relevant energy range, which constitutes the main as-
sumption behind the model. For λ ∈ R, the unitarity of
S(λ) follows from Hermiticity of the Hamiltonian HN .
The M × M matrix K is known in the literature as
the Wigner reaction K-matrix. To study fluctuations
induced by chaotic wave scattering one then follows the
paradigm of relying upon the well-documented random
matrix properties of the underlying Hamiltonian oper-
ator H describing quantum or wave chaotic behaviour
of the closed counterpart of the scattering system.
Within that approach one proceeds with replacing HN

with a random matrix taken from one of the classical en-
sembles: Gaussian unitary ensemble (GUE, β = 2), if one
is interested in the systems with broken time reversal in-
variance or Gaussian orthogonal ensemble (GOE, β = 1),
if such invariance is preserved and no further geometric
symmetries are present in the system. The columns wa

of the coupling matrix W, where a = 1, . . . ,M , can be
considered either as fixed orthogonal vectors [6] (com-
plex for β = 2 or real for β = 1), or alternatively as in-
dependent Gaussian-distributed random vectors orthog-
onal on average [10]. The results turn out to be largely
insensitive to the choice of the coupling as long as in-
equality M � N →∞ holds in the calculation. The ap-
proach proved to be extremely successful, and quite a few
S-matrix orK-matrix characteristics were thoroughly in-
vestigated in that framework in the last two decades, ei-
ther by the variants of the supersymmetry method or
related random matrix techniques, see e.g. [6, 11], as well
as more recent results in [12–15]. Such calculations are
found in general to be in good agreement with available
experiments in chaotic electromagnetic resonators (“mi-
crowave billiards”), dielectric microcavities, and acous-
tic reverberation cameras (see reviews [2–5]) as well as
with numerical simulations of scattering in such paradig-
matic model as quantum chaotic graphs [16] and their
experimental microwave realizations [17–20]. It is im-
portant however to stress that theoretical results based
on the random matrix description of HN are univer-
sal, i.e., insensitive to details of the model (and hence
meaningful for description of the experiments), provided
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the energy scales involved in the processes are compara-
ble with the mean level spacing ∆p in the closed counter-
part of the scattering system, with all channels detached
or closed. Only such scales correspond in time-domain
to long enough processes of resonance character.

Equivalently, entries Sab(λ) of the scattering matrix
can be rewritten as [6]:

Sab(λ) = δab − 2iw†a

[
1

λ1N −Heff

]
wb, (2)

with an effective non-Hermitian Hamiltonian
Heff = HN − iΓ, Γ = WW † ≥ 0, (3)

whose N complex eigenvalues λn = En − iΓn provide
poles of the scattering matrix in the complex energy
plane λ, commonly referred to as the resonances†. Note
that the scattering matrix of a system without gain or
loss is unitary, and necessarily has all poles in the lower
half of the complex energy plane Im(λ) < 0. Such poles
are accompanied by the corresponding zeroes in the up-
per half (Im(λ) > 0), whose positions are exact mirror
images of the poles in the real axis. This fact is most
clearly illustrated by the relation

det
(
Ŝ(λ)

)
=

det (λ1N −HN − iΓ]

det (λ1N −HN + iΓ]
:= e iδ(λ), (4)

where real δ(λ) is known as the scattering phase shift.
The statistics of real positions En and widths Γn of reso-
nant poles, as well as statistics of the associated residues
related to non-orthogonal eigenvectors of non-Hermitian
Hamiltonian Heff has been subject of considerable re-
search activity in this framework for a few decades the-
oretically [10, 21–38] and in the last decade became also
accessible experimentally [39–46]. At the same time,
as due to unitarity all information about zeroes is redun-
dant, those hardly attracted any attention until recently.

The situation changed with the recent advent of the
phenomenon of coherent perfect absorption (CPA) [47].
This phenomenon is also commonly referred to as “anti-
lasing” because it corresponds in a certain sense to revers-
ing the process of coherent emission of radiation at the
lasing threshold, with the goal being to ensure that there
is no outgoing waves for some nonzero input into the sys-
tem. The particular challenge is to realize such effect in
chaotic or disordered media without special symmetries.

To this end it was suggested in [48, 49] that CPA may
be engineered by adding spatially-localized losses making
the scattering system non-flux-conserving/nonunitary.
Such operation moves S-matrix zeroes and poles
around in the complex energy plane so that they
lose a simple relation to each other. To illustrate
this in the framework of the Heidelberg approach
let us consider a single point-like local absorber and
treat it as additional unobservable absorbing channel.
Such a channel can be most naturally characterized by

†Note that in some papers the convention λn = En − i Γn
2

is used.

a N -vector A with the norm |A|2 = γ0 > 0 assumed to be
orthogonal to the space spanned by all scattering channel
vectors wa, a = 1, . . .M . The parameter γ0 characterizes
the strength of the absorber, i.e., the amount of flux lost
irretrievably through this new channel. As a result, for
any γ0 6= 0 the former unitary M ×M scattering matrix
S(λ) becomes subunitary and can be most easily under-
stood as M ×M diagonal sub-block S(λ, γ0) of the full
unitary (M + 1) × (M + 1) scattering matrix S. Intro-
ducing the rank-one N ×N matrix ΓA = AA† ≥ 0 it is
easy to show [50] that such block S(E, γ0) can be written
in the form generalizing (1):

S(λ, γ0) =
1− iKA

1 + iKA
,

KA = W† 1

λ1N −HN + iΓA
W, (5)

which further implies

det (S(λ, γ0)) =
det (λ−HN + iΓA − iΓ)

det (λ−HN + iΓA + iΓ)
(6)

therefore showing that now the poles of S(λ, γ0) are
given by the N complex eigenvalues of the effective
non-Hermitian Hamiltonian H(+)

eff = HN − i (Γ + ΓA),
whereas zeroes of S(λ, γ0) are given by the N complex
eigenvalues of a different effective non-Hermitian Hamil-
tonian
H(−)

eff = HN + i (Γ− ΓA) . (7)
Hence zeroes are no longer related to poles as long as
the absorber is present: AA† 6= 0. In particular, it is easy
to understand that the system turns into a random anti-
laser at exactly those energies and loss values at which
any of the S-matrix zeroes crosses the real energy axis.
Indeed, such CPA has been recently experimentally real-
ized in an elegant experiment [51].

These developments naturally attracted interest to
S-matrix zeroes which can now be located in the whole
complex plane. Their properties clearly deserve to be
studied, both theoretically and experimentally. Recently
the density of those zeroes in the complex plane has been
efficiently described in the RMT framework, both pertur-
batively for weak losses [48] and non-perturbatively for
arbitrary losses [49]. An important question then arises
how the positions of the complex S-matrix zeroes can be
extracted from scattering measurements.

To this end let us first recall that the S-matrix poles
manifest themselves in a most explicit way via the so-
called Wigner time delay τW (λ) defined via the en-
ergy derivative of the scattering phase shift per scat-
tering channel [52]. As follows from (4) in the present
model Wigner time delay is exactly given by the sum of
Lorentzians of widths Γn centered at positions En,

τW (λ) :=
1

M

d

dλ
δ(λ) = − i

M

d

dλ
ln det (S(λ)) =

2

M

N∑
n=1

Γn

(λ− En)
2

+ Γ 2
n

. (8)
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Statistics of Wigner time delays and related quantities
in wave-chaotic scattering attracted a considerable inter-
est for about three decades and is still an active research
topic, see [53–64] and references therein. Interestingly,
τW (λ) naturally appears in characterization of systems
with spatially-uniform absorption. In fact, such absorp-
tion is always present in any realistic system, e.g., due to
losses in resonator walls in microwave cavities. It can be
very simply accounted for by allowing the spectral pa-
rameter λ to have a small imaginary part ε = Im(λ) > 0.
It is easy to see that such a replacement makes the full
scattering matrix subunitary: |detS(λ+ iε)| < 1. More-
over, expanding Eq. (4) for weak enough uniform losses
ε � ∆ shows that the degree of non-unitarity is exactly
controlled by the Wigner time-delay as
|S(λ+ iε)| ≈ e−εMτW (λ). (9)

This fact has been recognized long ago in an early pa-
per [65] and the relation (9) used there to efficiently ex-
tract Wigner time delays from unitary deficit of experi-
mentally measured scattering in a single channel M = 1
wave-chaotic system.

To see how a similar construction may help to get ac-
cess to S-matrix zeroes, we consider a guiding example
of a flux-conserving two-channel time-reversal invariant
scattering system characterized by the unitary 2×2 scat-
tering matrix which we write as

Ŝ(λ) =

(
R1(λ) t(λ)

t(λ) R2(λ)

)
.

Flux conservation implies unitarity which then imposes
the following relations between complex entries of the
matrix (suppressing the argument λ for simplicity):

R1,2 = |R|e iφ1,2 , t = |t|e iθ, e2 iθ = −e i (φ1+φ2). (10)
On the other hand, R1,2 can be easily represented in the
Heidelberg approach:

R1,2(λ) =
1− iK1,2

1 + iK1,2
,

K1 = w†1
1

λ1N −HN + iΓ2
w1,

K2 = w†2
1

λ1N −H + iΓ1
w2, (11)

where as before we used the notations: Γ1 = w1 ⊗ w†1
and Γ2 = w2 ⊗ w†2. By using straightforward algebraic
manipulations it is then easy to show that

R1(λ)

R2(λ)
= e i (φ1−φ2) =

det (λ1N −HN − iΓ1 + iΓ2)

det (λ1N −HN + iΓ1 − iΓ2)
.

(12)
Thus for the flux-conserving scattering system the ratio
R1(λ)/R2(λ) is unimodular, and its poles in the com-
plex λ-plane are eigenvalues of the effective Hamiltonian
H(−)

eff = HN + i (Γ1 − Γ2). The latter after straight-
forward re-interpretation is nothing else but exactly the
same object as one featured in our description of the
CPA, see (7) for the particular choice M = 1. Moreover,

motivated by Eq. (8) one may introduce the notion
of reflection time differences via the associated energy
derivatives

δT (λ) :=
1

2

∂

∂λ
(φ1 − φ2) = − i

2

∂

∂λ
ln

(
R1

R2

)
=

N∑
n=1

ImZn
(λ− ReZn)

2
+ (ImZn)

2 , (13)

with Zn = Re(Zn) + iIm(Zn) being exactly the com-
plex zeroes of R1. This construction makes it obvious
that δT (λ) plays for the S-matrix zeroes the same role
as the Wigner time delay plays for the S-matrix poles.
The only essential difference is that due to presence of ze-
roes in both halves of the complex plane each Lorentzian
term enters in the sum in (13) with its own sign, which
can be either positive or negative.

In particular, consider an interval of (real) energies
[λ1, λ2], such that |λ1 − λ2| � ∆p. Then,

λ2∫
λ1

δT (λ)dλ = π (N+ −N−) , (14)

where N+ and N− are numbers of complex zeroes whose
real parts Re(Zn) ∈ [λ1, λ2] and imaginary parts Im(Zn)
are respectively positive/negative. Moreover, incorpo-
rating now into our model weak uniform losses ε � ∆,
one has the relation∣∣∣∣R1

R2

∣∣∣∣
λ+iε

≈ e−2εδT (λ) (15)

fully analogous to (9) for the Wigner time delay. Such
a relation clearly provides a possibility to extract δT (λ)
from experimental measurements of the unitary deficit
of the ratio of reflection coefficients in weakly absorbing
microwave cavities with two open channels. Extension
to arbitrary number of open channels is very straight-
forward, and basically amounts to using det (R1) and
det (R2) instead of R1 and R2 in the definition of δT (λ).

Fig. 1. RMT simulations of two-channel Heidelberg
model with N = 400, γ1 = 0.1, γ2 = 0.05, ε = 10−5.
Blue circles are true zeroes, red + signs are extracted
using Eq. (13), and red × signs using Eq. (15) (courtesy
of M. Osman).
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Finally, the use of the reflection time difference δT (λ)
opens a possibility to extract positions of complex ze-
roes from the sum of (sign-weighted) Lorentzians in (13),
e.g., by using the harmonic inversion method, see [39]
and references therein. To test this possibility in prin-
ciple, a particular realization of the Heidelberg model
corresponding to N = 400 zeroes has been numerically
generated. Two open channels were chosen with par-
ticular values of coupling parameters γ1,2 = w†1,2w1,2,
and the poles were extracted by employing harmonic in-
version from the signal δT (λ) generated in two different
ways: via the energy derivative according to (13) and
from the unitary deficit in presence of a small uniform ab-
sorption as in (15). The extracted zeroes were compared
with their true values obtained by the direct diagonaliza-
tion of the associated non-Hermitian Hamiltonian H(−)

eff .
The results are presented in Fig. 1.

3. Conclusion

In this paper I suggest to use the reflection time differ-
ence δT (λ) as a probe of S-matrix zeroes in the complex
energy plane. It would be certainly interesting to de-
velop RMT approach further in order to characterize the
statistical properties of δT (λ) in systems with chaotic
wave scattering (such as distributions, correlation func-
tions, etc.). This task as well as experimental studies of
both δT (λ) and the associated S-matrix zeroes for real
systems remain among the outstanding challenges.
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