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The elastic enhancement factor F is commonly used to study the relationship between elastic and inelastic
scattering processes. In chaotic scattering the elastic processes are known to be enhanced over the inelastic ones.
Most thorough experimental studies of F are possible by using microwave setups simulating the quantum systems.
In this paper the elastic enhancement factor F (1)

M (γtot) is studied in a microwave chaotic quarter bow-tie cavity
emulating a chaotic two-dimensional quantum billiard with preserved time reversal symmetry in the presence of
significantly opened channels M with the total absorption strength γtot. The experimental results are obtained for
2 ≤M ≤ 9 open channels characterized by the average transmission coefficient 0.34 < T < 0.98, moderate internal
absorption strength γ = 0.9–2.8, and the total absorption strength γtot = 1.6–11.6. We show that the experimental
results are close to the theoretical predictions. Moreover, the spectral properties of the microwave quarter bow-tie
billiard are studied for M = 2 channels using missing level statistics. They comply with those of generic time
reversal invariant and classically fully chaotic systems.
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1. Introduction

The elastic enhancement factor F was introduced more
than half a century ago by Moldauer [1] and subse-
quently frequently considered in nuclear physics [2–5]
and in other fields [6–9]. From the experimental point
of view the elastic enhancement factor F is especially
interesting because it can be used to study realistic
open systems possessing preserved or broken time re-
versal symmetry. Its properties have been studied in
several precisely controllable systems such as microwave
cavities [8, 10–14] and networks [15–19]. Model sys-
tems such as microwave networks [18, 20–23] simulating
quantum graphs, flat microwave cavities simulating two-
dimensional quantum billiards [24–29] and experiments
with the Rydberg atoms strongly driven by microwave
fields [30–36] were very successfully used to simplify anal-
ysis of complex systems. For example, quantum graphs
can be used to model such complicated systems as exper-
imental setups to realize high-dimensional multipartite
quantum states [37], functional connectivity in preclini-
cal Alzheimer’s disease [38], and discrete-time quantum
gravity models [39]. The universality of the elastic en-
hancement factor F has been also tested in the wave
scattering experiments using microwave cavities [8, 11]
in the presence of absorption. Systems with time re-
versal symmetry have been tested by Zheng et al. [11].
Dietz et al. [8] have studied the universality of the elastic
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enhancement factor F with microwave cavities in the case
of preserved and partially broken time reversal symme-
tries. Quite recently an extensive study of the elastic
enhancement factor F for microwave cavities with time
reversal symmetry in a low absorption regime has been
published by Yeh et al. [12].

2. Theory

Furthermore, the elastic enhancement factor F has
been also studied for microwave irregular networks [20]
with preserved and broken time reversal symmetry in
the case of moderate and large absorption strength
5 ≤ γ′ ≤ 54.4 [15–17, 19]. The absorption strength [6, 7]
is defined as follows: γ′ = 2πΓ/∆, where Γ is the ab-
sorption width and ∆ is the mean level spacing. Mi-
croscopically, γ′ can be modeled by means of a large
number of weakly open, coupled to continuum, para-
sitic channels [7]. Such an approximation is often called
the Verbaarschot regime [3, 4]. Reference [5] deals with
the concept of open systems with a transient from regu-
lar to chaotic internal dynamics. There the openness η is
introduced instead of the absorption strength γ′, which
is described formally by the same formula. For such sys-
tems Γ is the well-known Weisskopf width and the recip-
rocal of Γ is the time that the incoming particle spends
on average inside the system. The situation changes
considerably if additionally too many weakly open chan-
nels have to deal with several significantly open channels.
Such a situation was considered theoretically in Ref. [9]
and can be experimentally realized in microwave exper-
iments. Under the mentioned conditions the absorption
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strength γ′ has to be supplemented by additional pa-
rameters connected with the open channels M . There-
fore, the enhancement factor depends on the number of
open channels M , the average transmission coefficient T
of the channels, and the internal absorption strength γ,
which as in the case of the Verbaarschot regime can be
modelled by means of many weakly open channels.

Such a generalized elastic enhancement factor has not
been studied experimentally as a function of the num-
ber of open channels M yet. In the present paper we
report on the results of experimental studies of the elas-
tic enhancement factor F (1)

M (γtot) [9] using a microwave
chaotic quarter bow-tie cavity simulating a chaotic two-
dimensional (2D) quantum billiard with preserved time
reversal symmetry in the presence of open channels M
and the total absorption strength γtot. The experimen-
tal results in the frequency range ν =6–12 GHz were ob-
tained for 2 ≤M ≤ 9 open channels, internal absorption
strength γ =0.9–2.8, and the total absorption strength
γtot = 1.6–11.6. The total absorption strength of the cav-
ity in the presence of M open channels and internal ab-
sorption γ is given by γtot = MT + γ. Here, we assume
that the channels M are equivalent and characterized
by the average transmission coefficient T = 1

M

∑M
i=1 Ti.

This assumption was experimentally verified. All Ti in
the investigated frequency range ν = 6–12 GHz were
within 5% to each other. Compared to Ref. [14] our anal-
ysis also includes the case of M = 2 channels.

In the case of the two-port scattering matrix

Ŝ(ν) =

[
Saa(ν) Sab(ν)

Sba(ν) Sbb(ν)

]
, (1)

the elastic enhancement factor F (1)
M (γtot) is defined by

the following relation [8]:

F
(1)
M (γtot) =

√
〈|Sflaa(ν)|2〉〈|Sflbb (ν)|2〉

〈|(Sflab(ν)|2〉
=

√
Caa(0)Cbb(0)

Cab(0)
,

(2)
where the fluctuating part of the two-port scattering ma-
trix element Sflab(ν) = Sab(ν) − 〈Sab(ν)〉 and Cab(0) de-
notes the S-matrix two-point correlation function

Cab(ε) = 〈Sflab(ν)Sfl∗ab (ν + ε)〉, (3)
calculated at ε = 0.

For strong internal absorption γ � 1 or a large number
of open strong channels M � 1 the enhancement factor
should saturate to F (1)

M (γtot) = 2, see [6, 7, 9, 11].

3. Experimental

In the experiment we used a microwave chaotic quarter
bow-tie cavity to simulate a two dimensional (2D) chaotic
quantum billiard. If the excitation frequency ν is below
νmax = c/2d, where c is the speed of light in the vac-
uum and d is the height of the cavity, only the trans-
verse magnetic modes can be excited inside the cavity.
Then, the Helmholtz equation of flat microwave cavity
and the Schrödinger equation of a quantum billiard of

Fig. 1. (a) Photo of the experimental setup. The scat-
tering matrix Ŝ(ν) of the cavity was measured in the fre-
quency window 6–12 GHz. The vector network ana-
lyzer Agilent E8364B was connected to the microwave
antennas through the flexible microwave cables (holes
A1 and A2). The measuring antennas with pin diame-
ter 0.9 mm and length 5.8 mm were protruded through
holes into the cavity introducing M = 2 open chan-
nels. The additional M ′ open channels were introduced
to the cavity by using M ′ antennas having the same
size as the measuring ones but shunt with 50 Ω loads.
(b) The scheme of the quarter bow-tie microwave cav-
ity used for measuring of the two-port scattering ma-
trix Ŝ(ν). In order to create different realizations of the
cavity a metallic perturber was moved inside the cavity.

corresponding shape are identical [40]. Figure 1 shows
a photography of the microwave chaotic quarter bow-
tie cavity, which was used for the measurement of
the two-port scattering matrix Ŝ. The size of the cav-
ity was the following: the area of the bottom (top)
plate A = 1828.5 cm2, the perimeter L = 202.3 cm, and
the height h = 1.2 cm. The cavity was made of pol-
ished aluminium type EN 5754. The inner surface was
entirely covered by 20 µm layer of silver, which leads to
a reduction of the internal absorption by around 30%.
The cavity was constructed out of two pieces: the bot-
tom plate, which was integrated with the side walls and
the top plate containing 9 randomly distributed holes A1,
A2,. . . , A9 (see Fig. 1). Both elements were very tightly
squeezed together using 127 screws. The quality factor Q
of the cavity ranged between 2000 and 3000.

The scattering matrix Ŝ was measured in the frequency
range 6–12 GHz. The higher range of the frequency was
limited by the cut-off frequency of the cavity νmax =
c/2d ' 12.49 GHz. The measurements of the two-port
scattering matrix Ŝ were performed using an Agilent
E8364B microwave vector network analyzer (VNA) which
was coupled to the cavity through the HP 85133-616 and
HP 85 133-617 flexible microwave cables via the two mea-
suring antennas. The measuring antennas with the pin
diameter 0.9 mm and the length 5.8 mm were protruded
through the holes into the cavity introducingM = 2 open
channels. The additional M ′ open channels required for
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the measurement of the enhancement factor F (1)
M (γtot)

with M > 2 were introduced to the cavity by M ′ an-
tennas, which had the same size as the measuring ones,
but were shunt with 50 Ω loads. The metallic perturber
“half-star” with the area A ' 9 cm2 and the perimeter
L ' 26 cm was inserted into the cavity (see part (b))
to obtain 100 different realizations of the cavity. It was
moved and slightly rotated alongside the walls quite far
from the antennas using an external magnet.

Internal absorption γ of the cavity can be changed by
varying the frequency range of the measurements or more
effectively by the application of microwave absorbers.
We were interested in the smallest possible absorption,
which can be varied by the choice of the microwave
frequency range.

4. Results and discussion

The internal absorption strength γ of the cavity was
evaluated by adjusting the theoretical distributions of
the reflection coefficient P (rj) of the diagonal elements
Sjj(ν) =

√
rje

iθj of the scattering matrix Ŝ(ν) to the ex-
perimental ones [14]. The index j = a, b denotes the port
a or b, and rj and θj are the reflection coefficient
and the phase evaluated at the j-th port of the cavity.
For chaotic systems with preserved time reversal symme-
try (β = 1) the distribution P (rj) of the reflection coeffi-
cient rj can be evaluated from the distribution P (xj , θj)
given by the formula (7) in Ref. [14]. In this formula,
which can be also applied for the cases with many open
channels, xj =

1+rj
1−rj .

The influence of the open channels on the spec-
tral properties of microwave cavities were investigated
based on missing level statistics where we considered
the nearest-neighbor spacing distribution P (s) [41, 42]
and the average power spectrum 〈s(k̃)〉 [43]. The sys-
tem with missing levels is characterized by the fraction
of observed levels ϕ. The distribution P (s) for the mi-
crowave quarter bowtie cavity with two open channels
M = 2 is shown in Fig. 2a (bars). The distribution P (s)
was averaged over 15 microwave cavity configurations.
In the calculations 3150 eigenfrequencies of the cavity
were used. Figure 2a shows that the experimental distri-
bution P (s) is in very good agreement with the nearest-
neighbor spacing distribution P (s) (dash-dotted line) ac-
counting for missing levels with the fraction of observed
levels ϕ = 0.94, which was found in the experiment.
Because the fraction of observed levels ϕ is close to 1,
P (s) is also very close to the Wigner distribution (solid
line), which is characteristic for chaotic systems with pre-
served time reversal symmetry.

For a more detailed analysis of the degree of chaoticity
of the measured system we used the power spectrum of
the deviation of the q-th nearest-neighbor spacing from
its mean value q, δq = εq+1 − ε1 − q [18, 41, 43, 44].
For a sequence of N levels it is given in terms of
the Fourier spectrum from “time” q to k, S(k) = |δ̃k|2,
with δ̃k = 1√

N

∑N−1
q=0 δq exp (−(2πikq)/N). It was shown

Fig. 2. (a) The nearest-neighbor spacing distribution
P (s) (bars) measured for the microwave quarter bow-tie
cavity for two open channels M = 2. The experimen-
tal distribution is compared to the theoretical distribu-
tion P (s) (red dash-dotted line) accounting for missing
levels with the fraction of observed levels ϕ = 0.94.
The theoretical prediction for the GOE (ϕ = 1) is
shown as solid line. (b) The experimental distribution of
the average power spectrum 〈s(k̃)〉 (black diamonds) is
compared to the theoretical prediction (red dash-dotted
line). The fraction of the observed levels was determined
to be ϕ = 0.94±0.02. The experimental results are also
compared to the theoretical prediction for GOE (ϕ = 1)
(black solid line).

in Refs. [45, 46], that for k̃ = k/N � 1 the power spec-
trum exhibits a power law dependence 〈S(k̃)〉 ∝ k̃−α.
Here, for chaotic systems α = 1, independently of
whether time reversal invariance is preserved or not, and
α = 2 for regular systems. In the case of missing levels
the power spectrum 〈s(k̃)〉 is given by the formula

〈s(k̃)〉 =
ϕ

4π2

K
(
ϕk̃
)
− 1

k̃2
+
K
(
ϕ (1− k̃)

)
− 1

(1− k̃)2


+

1

4 sin2(πk̃)
− ϕ2

12
. (4)

Here, 0 ≤ k̃ ≤ 1. K(τ) is the spectral form factor,
which for τ ≤ 1 equals K(τ) = 2τ − τ log(1 + 2τ) for
the Gaussian orthogonal ensemble (GOE) in the random
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Fig. 3. The elastic enhancement factor F (1)
M (γtot) of

the two-port scattering matrix Ŝ of the microwave quar-
ter bow-tie cavity forM = 2 (red full diamonds),M = 4
(blue full triangles), M = 6 (orange full circles), and
M = 9 (green full squares) open channels as a function
of the total absorption strength γtot. The theoretical
results for M = 2, M = 4, M = 6, and M = 9 channels
are shown with red, blue, orange, and green dotted lines,
respectively. The black dash-dotted line F (1)

M (γtot) = 2
shows the RMT limit for very strong absorption. Inset
(a) shows the dependence of the average transmission
coefficient T on the microwave frequency ν. The inter-
nal absorption strength parameter γ as a function of the
average transmission coefficient T is presented in inset
(b). The values of the parameter γ are given at the
positions marked by empty diamonds.

matrix theory (RMT). One should note that the nearest-
neighbor spacing distribution P (s) is less sensitive to
missing levels than the power spectrum 〈s(k̃)〉.

Figure 2b shows the experimental distribution of
the average power spectrum 〈s(k̃)〉 (black diamonds)
compared to theoretical prediction (red dash-dotted
line). The fraction of the observed levels was unambigu-
ously determined to ϕ = 0.94 ± 0.02, by comparison of
the experimental power spectrum to the theoretical one.
The experimental results are also compared to those
for the eigenvalues of random matrices from the GOE
(black solid line). The experimental results are in very
good agreement with the theoretical ones, confirming
that bow-tied shape microwave billiard exhibits spectral
properties typical for chaotic systems with the fraction
of observed levels ϕ = 0.94.

In Fig. 3 the enhancement factor F (1)
M (γtot) of the two-

port scattering matrix Ŝ(ν) of the microwave quarter
bow-tie cavity is shown for open channelsM = 2 (red full
diamonds), M = 4 (blue full triangles), M = 6 (orange
full circles), and M = 9 (green full squares) as a func-
tion of the total absorption strength γtot. Due to signif-
icant fluctuations of the enhancement factor F (1)

M (γtot)
the experimental points were obtained by averaging
of F (1)

M (γtot) over 100 different cavity realizations and
the antennas positions in the moving frequency window

(ν − δν/2, ν + δν/2), where δν = 1.0 GHz. The theoreti-
cal results are shown in Fig. 3 forM = 2,M = 4,M = 6,
and M = 9 channels with red, blue, orange, and green
dotted lines, respectively. The experimental results are
in good agreement with the theoretical ones. The black
dash-dotted line F (1)

M (γtot) = 2 shows the RMT limit
for very strong absorption. The inset (a) in Fig. 3
shows the dependence of the average transmission co-
efficient T on microwave frequency ν. The internal ab-
sorption strength parameter γ depends on the microwave
frequency and therefore also on the average transmis-
sion coefficient T and was changed from 0.9 to 2.8 with
the increase of the frequency ν from 6 to 12 GHz. The in-
set (b) in Fig. 3 presents the internal absorption strength
parameter γ as a function of the average transmission co-
efficient T . The values of the parameter γ are given at
the positions marked by empty diamonds.

5. Summary

The elastic enhancement factor F (1)
M (γtot) for the mi-

crowave chaotic quarter bow-tie cavity in the pres-
ence of strong open channels M and the total ab-
sorption strength γtot was studied numerically and ex-
perimentally. The experimental results were obtained
for 2 ≤M ≤ 9 open channels, moderate internal ab-
sorption strength γ = 0.9–2.8, and the total absorption
strength γtot = 1.6–11.6. We showed that the exper-
imental and theoretical results are close to each other.
Moreover, the spectral properties of the microwave bil-
liard with M = 2 open channels were studied us-
ing missing level statistics such as the nearest-neighbor
spacing distribution and the average power spectrum.
This analysis revealed that the studied microwave billiard
possesses time reversal symmetry and is fully chaotic.
This finding is crucial for a comparison of the experi-
mental results with the theoretical ones which are based
on random matrix theory.
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