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The wave properties of complex scattering systems that are large compared to the wavelength, and show chaos
in the classical limit, are extremely sensitive to system details. A solution to the wave equation for a specific
configuration can change substantially under small perturbations. Due to this extreme sensitivity, it is difficult to
discern basic information about a complex system simply from scattering data as a function of energy or frequency,
at least by eye. In this work, we employ supervised machine learning algorithms to reveal and classify hidden
information about the complex scattering system presented in the data. As an example we are able to distinguish
the total number of connected cavities in a linear chain of weakly coupled lossy enclosures from measured reflection
data. A predictive machine learning algorithm for the future states of a perturbed complex scattering system is also
trained with a recurrent neural network. Given a finite training data series, the reflection/transmission properties
can be forecast by the proposed algorithm.
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1. Introduction

The scattering of short-wavelength waves inside large
enclosures is commonly encountered in various fields of
physics and engineering, including quantum dots [1], op-
tical cavities [2], and microwave enclosures [3]. In wave
chaotic systems, the trajectory of the short-wavelength
rays shows chaotic dynamics [4, 5]. Minute perturba-
tions of the system, such as the enclosure boundary con-
dition changes, the shift of the driving frequency, and
the environmental conditions, can drastically change the
wave properties [6–8]. On the other hand, it is very diffi-
cult to extract structural or configurational information
from raw system measurements since the effect of struc-
tural changes on the wave trajectories is effectively hid-
den by the ray-chaotic nature of the system. Determinis-
tic numerical methods are not suitable for studying wave
chaotic systems, since the small wavelength feature calls
for extremely dense meshing [9], and a small change in
the system configuration may require a completely new
solution each time.

Statistical approaches have been proposed to un-
derstand wave chaotic systems, such as the dynami-
cal energy analysis method [10, 11], the power bal-
ance method [11–14], and the random coupling model
(RCM) [15–22]. The RCM accounts for the system-
specific features such as the coupling between ports and
the enclosure, and the universal underlying fluctuations
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described by random matrix theory, which are conjec-
tured to describe the chaotic behaviour of the wave
chaotic system [23–26]. RCM can generate both mean-
field and statistical predictions utilizing a minimum of
information, namely the system coupling details and the
enclosure loss parameter α [17, 18, 27–29].

Machine learning (ML) techniques have enjoyed in-
tense research interest in recent years [30, 31]. An ML
algorithm treats any given task as a mathematical prob-
lem and does not utilize knowledge of the specific physics
underlying the data. Benefiting from this “model-free”
nature, the ML algorithms find broad application in var-
ious sub-fields of physics, such as the identification of
phase transitions in condensed matter studies [32, 33],
the classification of multi-qubit states of trapped-ion
experiments [34], the auto-tuning of gate voltages in
quantum dots system [35, 36], and the future state
predictions of spatio-temporal chaotic systems [37–39].
Although successfully applied in various studies, one cru-
cial drawback of the ML techniques is the trade-off be-
tween a successfully trained program and the amount
of data required during its training phase. However,
the problem of training data acquisition does not pose
a great challenge to the analysis of wave chaotic sys-
tems. In order to compare experimental data to theo-
retical predictions based on the statistical methods men-
tioned in the previous paragraph, a large statistical en-
semble of measured data is required. This feature of wave
chaotic system analysis is suitable for building a success-
fully trained machine learning algorithm.

In this manuscript, we utilize ML techniques to deepen
our understanding of wave chaotic systems. In particular,
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we would like to classify the detailed underlying “hidden”
properties of a wave chaotic system, and to predict its fu-
ture states when subjected to systematic perturbations.
The paper is organized as follows. We start with an in-
troduction to the cascaded chaotic cavity experiment in
Sect. 2. The machine learning algorithms are introduced
in Sect. 3, and the results of the ML program outputs are
shown and discussed in Sect. 4. We conclude the work
and discuss future directions in Sect. 5.

2. Experimental setup of a wave chaotic system

We study the transmission and reflection of electro-
magnetic (EM) waves in wave chaotic enclosures. Short-
wavelength EM waves from 3.95 to 5.85 GHz are injected
into cavities of dimension 0.762×0.762×1.778m3 through
WR178 single-mode waveguides. The cavities are elec-
trically large (≈ 104 modes at the operating frequency
range) in order to simulate real-life examples of wave
chaotic settings such as rooms in buildings and cabins
in a ship. A series of individual cavities can be con-
nected into a linear cascade chain through apertures as
shown in Fig. 1. The total number of connected cav-
ities is varied from 1 to 3. Independent mode stirrers
are employed inside each cavity to create a large en-
semble of statistically distinct realizations of the sys-
tem [40–43]. Single-mode ports are mounted on the
first and last cavity in the cascade, shown as T (R)X
in Fig. 1. The 2 × 2 scattering (S)-parameters of the
entire cavity cascade system are measured with a vector
network analyzer (VNA), and the 2 × 2 impedance(Z)-
parameters are calculated. The S and Z parame-
ters are connected through the bilinear transformation
S = Z0

0.5 (Z + Z0)
−1(Z − Z0)Z0

−0.5, where Z0 is a di-
agonal matrix whose elements are the characteristic
impedance of the waveguide channels leading to the
ports. All mode stirrers are rotated simultaneously to
ensure a low correlation between each transmission mea-
surement, and the S-parameter measurements are car-
ried out when the mode stirrers are stationary. A total
number of 200 distinct realizations of the cavity cascade
are created. The degree of loss in each cavity is altered
by placing RF absorber cones in each cavity. The single
cavity “lossyness” is described by the RCM loss param-
eter α which is defined as the ratio of the 3 dB band-
width of a resonance mode to the mean spacing between
the modes [20, 29], and is basically the number of over-
lapping modes at a given frequency. The loss parame-
ter can have values ranging from 0 (no loss) to infinity
(extremely lossy).

The real and imaginary parts of diagonal impedance
Z11 measurements for a single realization is shown in
Fig. 2. The curves correspond to systems with a dif-
ferent number of connected cavities, varying from 1 to 3.
The cavities are nominally identical, in that all cavities
share the same physical dimension and a uniform sin-
gle cavity loss parameter value: α = 9.7. It has been
demonstrated both theoretically and experimentally that

Fig. 1. Schematic of the experimental setup. We mea-
sure the S-parameter of a 3-cavity cascade system with
a VNA. The cavities are connected through circular
apertures. Rotatable mode stirrers are employed in
each cavity to generate different system configurations.
The scale of the operating wavelength λop is shown
as the bar.

the statistical properties of the diagonal impedance Z11

of a high-loss (α� 1) cavity cascade system remain vir-
tually unchanged regardless of the total number of con-
nected cavities in the chain [27]. The real and imagi-
nary parts of measured Z11 values of multi-cavity sys-
tems are shown in Fig. 2a and d. Direct observation
of the frequency dependent Z11 results cannot provide
useful information to classify the number of connected
cavities, since the curves are essentially on top of each
other and effectively indistinguishable as a function of
frequency. The detailed Re(Z11) and Im(Z11) from 5.605
to 5.62 GHz are shown in Fig. 2b and e. Even with the de-
tailed view, it is still hard to differentiate the Z11 curves
from either the mode density, the level of fluctuation, or
the averaged Z11 value levels. Statistical analysis of the
Re(Z11) and Im(Z11) measurements are shown in Fig. 2c
and f. The Z11 PDFs of 1-, 2-, and 3-cavity cascade are
very similar to each other and difficult to systematically
distinguish. The Fourier transforms of the multi-cavity
Z11 data show similar time-domain responses. We first
wish to see if an ML algorithm can be trained to correctly
distinguish the number of cavities in the cascade simply
from raw data such as that shown in Fig. 2. The sec-
ond objective is to see if an ML algorithm can predict
the evolution of the S- (or Z-) parameters as the cavity
cascade is systematically perturbed.

3. ML model: neural network

The neural network (NN) and its modifications, in-
spired by the electric signal propagation mechanism of
brain neuron cells, are widely applied in various fields,
such as speech identification, pattern recognition, and
picture captioning [44]. A neural network is one of the
supervised learning algorithms whose goal is to utilize
the given training set information and establish a generic
method to assign labels to the testing sets. As a typ-
ical example of classifying cat and dog pictures, a su-
pervised learning algorithm refines its classification rule
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Fig. 2. Multi-cavity diagonal impedances Z11 from 2-port measurements on either 1-cavity (blue), 2-cavity (red) or
3-cavity (green) cascade. The inset in (c) is the schematic diagram of the Z-parameter measurement of 1-, 2- and
3-cavity cascade structures. (a) and (d): the real and imaginary parts of Z11 from 3.95 to 5.85 GHz for a single
realization of the system, whose detailed views are shown in (b) and (e), and the corresponding statistical analysis over
a large ensemble of Re(Z11) and Im(Z11) are plotted in (c) and (f). The single cavity loss parameter is α = 9.7.

using thousands of images of correctly labeled cat and
dog images. More specifically, the algorithm identifies
the label of a given picture through the pixel values of the
images. A typical structure of a NN is shown in Fig. 3.
We will next briefly introduce the operating principle of
the NN with the example of an m-class picture classi-
fication task (m = 2 for the cat and dog classification
example).

In each iteration, the information of one picture from
the training set is prepared into a column vector and used
as the input of the NN algorithm. For example, a pic-
ture of L × L pixels is reshaped into a (L2, 1) vector x
by simply concatenating the L × 1 lines L times. The
input vector is further modified as x̃ = x−〈x〉

σx
in order

to improve the performance of the algorithm, where 〈x〉
and σx are the mean and standard derivation of x. After
the input preparation, the i-th input x̃(i) is passed on
to the first (represented in the subscripts) hidden layer
h
(i)
1 (with n1 units) through h

(i)
1 = σ(W

(i)
1 · x̃(i) + b

(i)
1 ),

where W (i)
1 and b(i)1 are an (n1, L

2) coupling matrix and
an (n1, 1) bias vector, respectively. The non-linear func-
tion σ(·) adds to the complexity of the NN and fur-
ther expands the network’s functionality. The first hid-
den layer vector h(i)1 is transferred to the second hid-
den layer through h

(i)
2 = σ(W

(i)
2 · h(i)1 + b

(i)
2 ), where

W
(i)
2 and b

(i)
2 are the coupling matrix and the bias of

Fig. 3. Generalized (recurrent) neural network archi-
tecture with two hidden layers. The NN consists of the
one input layer, hidden layers and one output layer. The
RNN is built upon the NN structure with the addition
of “memory effects” at each hidden layer (shown as the
dashed arrows).

the second hidden layer, and the same nonlinear function
σ(·) is used. The algorithm labels the input picture using
y
(i)
NN = f [σ(W

(i)
n+1·h

(i)
n +b

(i)
n+1)]. Similarly,W (i)

n+1 and b
(i)
n+1

are the coupling matrix and bias at the output coupling
layer, and f is a normalization function which transforms
the value of σ(W (i)

n+1 · h
(i)
n + b

(i)
n+1) into a “one-hot” label

vector. The “one-hot” label is a one-column vector with
m elements representing the m possible output classes.
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TABLE I

The 1-hidden-layer NN and RNN comparison. x, h and y are for the input, hidden layer, and output vectors, respectively.
σ is the non-linear function. The superscript i refers to the index of input series. b is the bias vector and Wk→j refers
to the coupling matrix from vector k to vector j.

NN RNN
forward data flow x(i) → h(i) → y(i) x(i) → h(i)(� h(i−1))→ y(i)

hidden layer h(i) = σ(W
(i)
x→h · x

(i) + b(i)) h(i) = σ(W
(i)
x→h · x

(i) +W
(i)
h→h · h

(i−1) + b(i))

output y(i) =W
(i)
h→y · h

(i) y(i) =W
(i)
h→y · h

(i)

For a given training data input, the normalization func-
tion f sets only one vector element of y(i)NN to 1, which
represents the label of the class for that particular data
set, and the other elements to zero. In the meantime,
a cost function fcost = ||y(i)NN − y(i)|| is calculated to de-
scribe the distance between the algorithm label y(i)NN and
the known label y(i) for that given input x(i). The goal
of the training process is to minimize the value of fcost
through the so-called back propagation process, where
the algorithm refines the values of all coupling matrices
W and biases b, utilizing the derivative values dfcost

dW and
dfcost
db . The back propagation process is repeated for all

pictures in the training set. The values of all network
parameters are fixed after the training. In the testing
phase, unseen pictures are fed into the trained network
with their machine predicted labels calculated, while the
back propagation process is not used. If the predicted la-
bels agree well with the correct labels, the classification
NN algorithm is successfully trained.

The recurrent neural network (RNN) structure is based
on the neural network with the addition of a memory
effect. As shown in Fig. 3, extra loops are employed
in every hidden layer. We use Table I to illustrate the
difference between a 1-hidden-layer NN and a 1-hidden-
layer RNN. The RNN hidden layer h(i) has an additional
influence from its previous state h(i−1) through the h→ h

coupling matrix W (i)
h→h. This feature grants an RNN the

ability to store information from previous iterations, and
the potential to predict future states. Differing from the
NN algorithm, which is insensitive to the specific order of
the input information, an RNN algorithm requires that
the inputs are fed into the algorithm following a strict
time-ordering or systematic evolution.

4. Wave chaotic case studies

4.1. Cascaded multi-cavity system classification

We utilize the neural network algorithm to classify dif-
ferent wave chaotic systems based on raw scattering data.
The goal is to train the machine to classify the total num-
ber of cavities in the linear cascade chain by using the
raw impedance (Z) matrix measurements. As discussed
in Sect. 1, the diagonal element Z11 of 1-, 2-, and 3-cavity
systems is very difficult to distinguish by eye, and also
shares nearly identical statistical properties as shown in
Fig. 2. In the 1-, 2-, and 3-cavity cascade measurements,

we rotate the mode stirrer to 200 unique and distinct
angles in order to generate a large ensemble of measured
data. The impedance measurement sweep is from 3.95 to
5.85 GHz with 16001 frequency points. One-hot vectors
of size (3,1) are created as the correct labels for all config-
urations. 80% of the total measurements (3× 200 = 600
realizations from 1-, 2- and 3-cavity cascade cases) are
used to train the algorithm, and 20% of the data is re-
served as a testing data set. The NN employs 4 hidden
layers which have 25, 26, 33, and 18 units, respectively.
The specific choice of the total number of layers and units
per layer can be varied. We use the Tensorflow [45] pack-
age in the back propagation process. The training and
testing results are shown in Fig.4. To speed up the algo-
rithm, we select subsets of size 2000 (Fig. 4a) and 5000
(Fig. 4b) uniformly chosen frequency points out of the
total 16001 Re(Z11) measurements as input vectors (the
Im(Z11) input algorithm also works just as well but the
results are not shown). In both cases, the cost function
decreases sharply and the testing set accuracy reaches
above 95% within 500 cost-function minimization itera-
tions. We observe that training the algorithm with 5000
data points in the input vectors (Fig. 4b) reaches a higher
testing accuracy (98.3%) as compared to the fewer data
point case (95%). The testing accuracy reaches to 100%
(Fig. 4c) when all measured data points are fed into the
NN algorithm. One can understand the improvement
of test performance from the fact that more information
are delivered to the algorithm with the increase of input
vector size. The algorithm successfully identifies the to-
tal number of connected cavities in the cascade utilizing
only the knowledge of the system diagonal impedance as
a function of frequency. The result indicates that the
algorithm is able to detect and utilize “hidden order” em-
bedded in the measured data, completing a task that is
hard to achieve with either visual inspection or by more
sophisticated analysis and statistical means [33].

We further explore the limitations and robustness of
the developed multi-cavity classification algorithm. We
first test the algorithm’s ability to identify unseen mea-
sured data. An algorithm is trained to successfully clas-
sify the Re(Z11) measured data from the 1- and 3-cavity
cascade systems. The NN output has three classes: the
1- and 3-cavity systems whose data are seen by the al-
gorithm in the training phase, and an untrained 2-cavity
system class. In the testing phase, we mix in the Re(Z11)
data from 2-cavity cascade measurements. We find that
the algorithm classifies the 2-cavity data into the all three
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Fig. 4. The NN classification algorithm performance for 1-, 2-, and 3-cavity Re(Z11) data. (a)–(c) The cost function
fcost (blue, left logarithmic axis) and test accuracy (red, right linear axis) results are evaluated to 500 iterations of the
algorithm. The dimension of the input vector is 2000, 5000 and 16001 in (a), (b) and (c), respectively. (d) The test
accuracy results with and without additional Gaussian noise. The dimension of the input vector is 5000. The signal to
noise ratio values are -5, 5, 15 dB and the original data.

categories with equal probabilities. This result indicates
that the classification algorithm applies strictly to the
data drawn from the training ensemble. We next test
the algorithm’s tolerance level to noise. The algorithm
is successfully trained to classify the Re(Z11) data from
1-, 2-, and 3-cavity cascade measurements with minimal
experimental noise. In the testing phase, Gaussian noise
are added to the Re(Z11) measurements to achieve signal
to noise ratios (SNR) of -5, 5, and 15 dB. The power level
of the noise Pn is calculated from SNR = 10 log10(Ps/Pn)
based on the signal power level Ps. As shown in Fig. 4d,
the final test accuracy changed from 0.9 to 0.66 (saturat-
ing after the 1000 iterations) with the decrease of SNR
from +15 to -5 dB. The result shows that the classifica-
tion algorithm retains its ability to distinguish the cavity
number when the noise level is not too high.

The use of the frequency and realization-averaged Z11

values was investigated as a possible alternative to the
machine learning algorithm. The 1-, 2-, and 3-cavity cas-
cade 〈Re(Z11)〉 are nearly identical (varying by 0.7% of
the average value). The ML algorithm fully retains the
classification performance for the multi-cavity Re(Z11)
data even after it has been normalized by the average val-
ues. This demonstrates that the algorithm utilizes details
that are not easily summarized when making a high reso-
lution distinction between the three scattering scenarios
based on statistics. With statistical methods, repetitive
independent measurements of the multi-cavity system
can produce stable mean values of 〈Re(Z11)〉 to further
distinguish the different cases. To obtain a good estima-
tion of 〈Re(Z11)〉 and decrease the uncertainty, this ap-
proach involves a large number of measurements of each
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different system in the data-gathering phase. In the pre-
diction phase, given an unknown system, a large amount
of additional data is required to acquire a good measure-
ment of 〈Re(Z11)〉 to perform classification. By contrast,
a trained ML algorithm can distinguish an unknown sys-
tem with only one round of measurement. Compared to
the statistical method, the ML algorithm requires con-
siderably less data to produce a confident classification
of the system.

4.2. Chaotic cavity S-parameter series prediction

Inspired by the recent progress of predicting the fu-
ture evolution of classically chaotic systems with machine
learning techniques [37–39, 46], we utilize the RNN al-
gorithm to predict the evolution of a wave chaotic sys-
tem under systematic perturbation. We record the 2× 2
S-parameter matrix of a single wave chaotic enclosure
under a sequential and systematic perturbation from a
rotating mode stirrer. The dimension of the single cav-
ity is 0.038 × 0.038 × 0.089 m3. EM waves from 75 to
110 GHz are fed into the cavity (≈ 104 modes at the
operating frequency range) through single-mode WR10
waveguides from Virginia Diodes VNA Extenders and the
S-parameters are measured by a VNA. The mode stirrer
is rotated to 1000 unique angles with uniform step an-
gle size. A full rotation of the mode stirrer takes ≈ 120
steps. There exists some correlations between the mea-
surements. The task is to use a portion of the measured
S11 and S21 data to train the RNN algorithm, and then
generate predictions of S21 by supplying additional mea-
sured S11 data obtained later in the sequence. It is dif-
ficult to predict the future state of a wave chaotic sys-
tem based solely on its history information, since minute
changes of the system’s boundary condition can drasti-
cally affect the EM wave properties [47].

The RNN algorithm is implemented with the layer re-
current neural network function from the Matlab Deep
Learning Toolbox [48]. Similar to the neural network
training, we first prepare the input vectors x̃ = x−〈x〉

σx

to improve the performance of the algorithm. In con-
trast with the input labeling process in the NN, one
must prepare the input and output vectors in the correct
evolutionary order. We next define the desired network
parameters, such as the sizes of the hidden layer units
and the method of back-propagation optimization. In
the chaotic cavity S-parameter prediction task, the in-
put vectors are assembled from measured |S11| at 50 fre-
quency points with 175 MHz spacing from 75 to 110 GHz.
The output vectors are from measured |S21| at 5 fre-
quency points with 2.5 GHz spacing (≈ 1000 modes exist
in this frequency interval). It is not shown here, but the
algorithm also works for the real/imaginary parts of the
S-parameters as input and output. The adopted RNN
structure has 38 units in 1 hidden layer. The Levenberg–
Marquardt method is applied in the back-propagation
process to optimize the weight and bias values [49, 50].
The testing results from all frequency points are shown
in Fig. 5. The first 900 realization of the measured

Fig. 5. The |S21| prediction of a wave chaotic elec-
tromagnetic system future states using measured |S11|.
The measured |S21| data (colored solid lines) and al-
gorithm predictions (colored dashed lines) from 5 fre-
quency points are compared for cavity realizations 900
to 1000. The black lines show the absolute magnitude
of the difference between the measured data and the
algorithm prediction.

data are used as the training set, and the testing be-
gins with the 901-st realization. Only measured reflec-
tion information (|S11|) is fed to the algorithm, serving
as the observer of the system [37, 39], and we record the
machine predicted transmission information (|S21|). As
shown in Fig. 5, we observe good agreement between the
algorithm-generated and measured transmission |S21| at
least for the first 40 or so realizations for all 5 frequency
points. The prediction degrades beyond this point.

4.3. Discussion

The ML techniques are shown to successfully classify
different wave chaotic systems and to give predictions of
future system states. Benefiting from its model-free prop-
erty, ML can be versatile for various tasks. However, the
training process of ML methods requires large amounts
of measured or simulated data, and the tuning of algo-
rithm hyperparameters, including the number of layers,
the number of units per layer, etc. These choices must
be guided by experience with the algorithms rather than
knowledge of the physical problem. The NN based wave
chaotic classification task can be further developed into a
cavity loss parameter (α) detector, or an algorithm to dis-
tinguish different types of perturbation of a wave chaotic
system, for example. The application of RNN and other
techniques, such as the long short-term memory meth-
ods, the nonlinear autoregressive neural network, and
reservoir computing, may give predictions for the future
evolution of the S-matrix when the boundary condition
of the enclosure is subject to systematic perturbation.



Classification and Prediction of Wave Chaotic Systems with Machine Learning Techniques 763

The algorithm could be utilized to predict the future
S-matrix of an evolving system, thus allowing identifica-
tion of coherent perfect absorption conditions of a wave
chaotic system [51], for example.

5. Conclusion

In this paper, we show that machine learning tech-
niques are able to harness hidden features of raw wave
chaotic data sets to make subtle distinctions between dif-
ferent scattering systems. ML techniques may also be
able to make future state predictions of the measured
data in a systematically-perturbed wave chaotic system.
The robustness of the classification neural network al-
gorithm is studied and shown to be loyal to the data
drawn from the training ensemble. The classification al-
gorithm also has some degree of tolerance to the addition
of noise. The advantages and weakness of ML techniques
and possible future applications are also discussed.
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