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Very often in numerical calculations of magnetic field distribution in ferromagnetic materials it is necessary to
take into account a certain model of the magnetic hysteresis presenting changes of the flux density as a function
of the magnetic field strength. However, in many cases it is profitable to apply an inverse model of the magnetic
hysteresis describing the relationship between the field strength and the flux density. This paper presents a relatively
simple method of approximation of field strength changes during magnetization of electrical steel sheets. It is
assumed that the field strength changes are a sum or a difference of a function which describes one curve of the
limiting hysteresis loop and a certain “transient” component. A method of the determination of functions describing
changes of the field strength for assumed changes of the flux density is discussed in the paper. Theoretical
considerations have been confirmed by comparison between measured and calculated hysteresis loop for chosen
dynamo and transformer steel sheets.
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1. Introduction

The physics of the magnetic hysteresis phenomenon
is quite well known [1–4]. In the range of small values
of the magnetic field strength, reversible displacements
of domain walls occur. The magnetization process of
soft magnetic materials is irreversible for medium values
of the field strength because this process is associated
with irreversible movements of domain walls. The char-
acter of flux density changes (or magnetization changes)
in the range close to the magnetic saturation is again
reversible. In this case flux density vectors of individ-
ual domains rotate towards the vector of the magnetic
field strength. Very often calculations of both the mag-
netic field distribution and eddy current distribution, as
well as estimation of power losses in ferromagnetic ma-
terials require consideration of the magnetic hysteresis
phenomenon. A chosen hysteresis model should fulfil
the following conditions:

• model parameters should be easily determined,
• numerical calculations can be also carried out for
magnetic field quantities containing a constant
component (minor hysteresis loops),

• hysteresis model should have a reverse version that
allows to compute changes of the field strength de-
pending on the flux density changes,

• numerical calculation algorithm should be rela-
tively simple,

• chosen model can be introduced into equations of
the magnetic field distribution.
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However, it should be emphasized that the most im-
portant criterion regarding the choice of the hysteresis
model is the accuracy of calculation results in compar-
ison to magnetic measurements. Creation of a suitable
mathematical model on the basis of the physics of this
phenomenon is still a relatively difficult problem, de-
spite the fact that scientific literature contains a lot of
papers presenting different mathematical models of this
phenomenon. It has meaning especially in numerical cal-
culations of the magnetic field distribution in dynamo
or transformer steel sheets. The degree of difficulty in-
creases significantly when a certain model of the hystere-
sis phenomenon should be taken into account in calcula-
tions of the field strength and flux density changes dur-
ing the rotational magnetization. Different models of the
magnetic hysteresis are used not only in calculations con-
cerning axial magnetization processes, but they are also
basis of vectorial models, which are applied in considera-
tions of rotational magnetization processes. Some models
describe the hysteresis phenomenon, presenting the mag-
netization as a function of the field strength M = f(H);
the other ones show the flux density as a function of the
field strength B = f(H).

Very often questions about the choice of an appropri-
ate hysteresis model come up during the creation of a nu-
merical program for field calculations. First of all, these
questions relate to problems as the accuracy and times of
numerical calculations. In many cases, a determination
of parameters of a chosen hysteresis model is a serious
problem. Some of these parameters are determined ex-
perimentally, others are based on theoretical considera-
tions. However, the accuracy of modeling of real hystere-
sis changes is the fundamental criterion in assessment of
the chosen hysteresis model.
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2. Properties of hysteresis models

Some hysteresis models are directly based on physi-
cal principles, primarily on energy relationships. The
most known models which belong to this group are the
Stoner–Wohlfarth model and the Jiles–Atherton model.
The Stoner–Wohlfarth model is the oldest model of the
hysteresis phenomenon, which describes the magnetiza-
tion process as rotations of the magnetic moments of in-
dividual domains [5–7]. In this model the magnetiza-
tion vector is a sum of magnetizations of single domains
aligned along the specified directions. This model takes
into account only the rotation of the magnetization vec-
tor, and the new position of this vector is determined
on the basis of the minimum energy condition. How-
ever, the domain displacements, that are the fundamental
mechanism in magnetization processes of ferromagnetic
materials, are not taken into consideration. The Stoner–
Wohlfarth model is a vector model in fact. Applications
of this model for macroscopic samples demand specifica-
tion of a certain number of directions in the tested fer-
romagnetic material. Therefore, computation times are
relatively long and they depend directly proportionally
on the number of the specified directions. The resultant
magnetization is the vector sum of the magnetizations
of all specific directions. However, it is not possible to
create an inverse model because the new position of the
magnetization vector in this model depends on two input
values, i.e., on the length of the field strength vector and
its position with respect to the direction of the external
field strength.

In the Jiles–Atherton model it is assumed that the
energy supplied to the ferromagnetic material is a sum
of the change of the magnetostatic energy and hystere-
sis losses [6–11]. In order to determine parameters of
this model the following experimental values are needed
(among others): the coercive force, the residual flux den-
sity, and the saturation parameters. Although the ma-
jority of these parameters are calculated on the basis of
the measurement data, it is necessary to modify them in
order to obtain the best representation of the real wave-
forms. The determination of a certain anhysteretic curve
causes some difficulties because it is a theoretical curve;
the authors of this model draw attention to this fact [8].
The basic version of the Jiles–Atherton model has to be
modified accordingly in order to take into consideration
an occurrence of minor hysteresis loops. The inverse
model is formulated similarly to the base model [12].
The Jiles–Atherton model is suitable for modeling of rel-
atively narrow hysteresis loops. It is not useful in cases
when the hysteresis loop is relatively wide and especially
has a rectangular shape. The main disadvantage of this
model is the need to determine model parameters for
almost each amplitude of the field strength. This fact
definitely limits applications of this model in numerical
calculation, especially for cases where the field strength
amplitude is not known a priori. Nevertheless, this model
is quite often used and even modified [13–15].

To hysteresis models based on energy dependences the
Globus model should be included [7, 16]. In this model it
is assumed that the magnetization process is based only
on the mechanism of displacements of the domain walls.
Despite a relatively simple algorithm and short calcula-
tion times, this model is rather unhelpful due to the un-
satisfactory representation of hysteresis changes occur-
ring in ferromagnetic materials. However, it should be
emphasized that this model is practically a single model
that uses energy dependences related directly to the do-
main structure of a ferromagnetic material.

The most known hysteresis model is the phenomeno-
logical Preisach model [3, 6, 7, 17]. In this model it is
assumed that the considered material consists of parti-
cles, so-called hysterons, magnetized to positive or neg-
ative saturation which have a rectangular hysteresis de-
termined by two specific values. The Preisach triangle
is a characteristic feature of this model. This triangle
consists of two parts where one of these parts represents
positively magnetized particles, and the second concerns
negatively magnetized particles. The areas of these parts
depend on changes in the field strength. A certain dis-
tribution function describes how many hysterons are lo-
cated at a given point of the Preisach triangle. This
model is built directly on the basis of the measurement
data. The selection of a suitable distribution function
is very time-consuming one. This model allows creating
any hysteresis loops and any minor loops by the suitable
choice of the distribution function. The inverse model is
made similarly to the base model. The simple calcula-
tion algorithm is a significant advantage of this model,
however, long calculation times that depend on a degree
of the Preisach triangle discretization are significant dis-
advantages. The Preisach model allows describing the
hysteresis changes for different ferromagnetic materials
with relatively high accuracy. The Preisach model is
still modified and often used in different applications,
and it is a basis of some vectorial models of rotational
magnetization [18–21].

Relatively simple model of the magnetic hysteresis,
that allows us to approximate changes of the flux den-
sity is widely described in [22, 23]. Any point P with
coordinates (H, B) can move along a certain trajectory
to one of the limiting magnetization curves B = f(H),
depending on the field strength changes (Fig. 1). It re-
sults from the phenomenon of the magnetic hystere-
sis considered in the macroscopic scale. In this model
the flux density changes Br(H) for increasing values of
the field strength H and Bd(H) for decreasing values H
are described by the following expressions [24]:
Br(H) = Bb(H)+

[
B0−Bb(H0)

]
exp(−kHr(H−H0)), (1)

Bd(H) = Bu(H)−
[
Bu(H0)−B0

]
exp(kHd(H−H0)), (2)

where Bb(H), Bu(H) are bottom and upper curves of the
limiting hysteresis loop, respectively, H0, B0 are initial
values of the hysteresis changes, kHr, kHd are coefficients
selected on the basis of some empirically measured minor
hysteresis loops.
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Fig. 1. Hysteresis loop as a function B = f(H).

The second components, which contain exponential
functions, can be treated as certain pseudo-transient
components of changes of the flux density. The coeffi-
cients kHr, kHd influence the “speed” of the point P mov-
ing to one of curves of the limiting hysteresis loop. Values
of the coefficients kHr, kHd depend on the initial position
of the point P (H0, B0) with respect to the curves of the
limiting hysteresis loop. The differences B0 − Bb(H0),
Bu(H0)−B0 are initial values of “transient” components
of the flux density changes.

On the one hand, this model allows to calculate flux
density changes without going into details of the domain
structure of the given ferromagnetic materials. On the
other hand, this model directly uses the hysteresis prop-
erties which concern trajectories of any point (H, B) in-
side the limiting hysteresis loop. The proposed approach
to hysteresis modeling also allows to calculate changes of
the flux density when a certain alternating field strength
has a constant component [23]. The minor hysteresis
loops are symmetric with respect to the center of the co-
ordinate system (H, B). It is in accordance with the
so-called Madelung rules [25, 26]. Steady state occurs
after several cycles of the field strength changes unlike to
the “classical” Preisach model where this state takes place
already after a first cycle of the field strength changes.

To less known and rarely used models of the mag-
netic hysteresis belong the Hodgdon model [6, 7], and
the model proposed by Bogucki [27]. In the first one
the dependence between the field strength and flux den-
sity is presented by means of a special differential equa-
tion. Applying this model, the relatively high accu-
racy can be obtained for the magnetic materials which
have a narrow hysteresis loop. The determination of
the Hodgdon model functions is time-consuming and re-
quires many tests, especially some little changes of these
model parameters influence considerably the shapes of
the calculated loops. The Bogucki model is based on
two non-linear first-order differential equations, present-
ing changes of both the magnetic field strength and flux
density in ferromagnetic materials. It is assumed that
the resultant field strength is a superposition of two field

strength components where the first one depends on the
anhysteretic curve and the second one is determined by
the appropriate exponential function. However, the an-
hysteretic curve can be determined only theoretically,
similarly as in the Jiles–Atherton model.

It is worth noting that some hysteresis models, the
so-called dynamic models, take into account influence of
eddy currents on flux density changes in the ferromag-
netic materials. In these cases, shapes of the hysteresis
loops, that depend strongly on the amplitude and fre-
quency of the field strength, are wider than the loops
of the static hysteresis. Measurements of these hystere-
ses have been most often performed for sinusoidal cur-
rents. However, the dynamic hysteresis models are being
used increasingly rarely because many electrical devices
containing magnetic materials are supplied by semicon-
ductor converters. This means that changes in both the
field strength and flux density have higher order harmon-
ics. The influence of the eddy currents on the magnetic
field distribution is often taken into account by means of
separate equations which are based on the differential or
integral form of the Maxwell equations.

3. Approximation of field strength changes

The so-called inverse hysteresis models that present
changes of the field strength as dependences of the flux
density are often applied in calculations of the mag-
netic field distribution, especially using a finite element
method. In such cases, an unknown variable in equa-
tions of the magnetic field distribution is the vector
potential A, which allows to determine changes of the
flux density B based on the dependence B = rotA.
Therefore, the field strength components H assigned
to individual elementary segments of the magnetic field
space, especially in relation to the ferromagnetic mate-
rials, have to be replaced by appropriate functions of
the flux density B.

Considering an inverse model of the magnetic hystere-
sis, point P with the coordinates (B, H) can move to
one of the limiting magnetization curves H = f(B), de-
pending on changes of the flux density (Fig. 2). When
the flux density B increases then changes of the field
strength Hr(B) can be written in the following form:
Hr(B) = Hu(B)−

[
Hu(B0)−H0

]
exp(−kBr(B−B0)), (3)

where Hu(B) is upper curve of the limiting hysteresis
loop (as a function H = f(B)), H0 is initial value of
the field strength, B0 is initial value of the flux density,
kBr is attenuation coefficient of the “transient” compo-
nent when B increases. For decreasing values of the flux
density, the relationship describing changes of the field
strength Hd(B) can be written as follows:
Hd(B)=Hb(B) +

[
H0−Hb(B0)

]
exp(−kBd(B−B0)), (4)

where Hb(B) — lower curve of the limiting hysteresis
loop (as a function H = f(B)), kBd — attenuation coef-
ficient of the “transient” component, when B decreases.
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Fig. 2. Inverse hysteresis loops as a function H = f(B).

The coefficients kBr, kBd depend, first of all, on the
initial position of the point P (B0, H0) with respect to
curves of the limiting hysteresis loop. In accordance to
the physics of the hysteresis phenomenon, the derivative
dHr/dB is in the range (aBur, aBbr) for the increas-
ing values of the flux density B; aBur is equal to the
value of this derivative when the initial point P (B0, H0)
is on the upper curve Hu(B) of the limiting hysteresis
loop, and aBbr is equal to this derivative when the point
P (B0, H0) is close enough to the bottom curve Hb(B).
The value aBbr is determined on the basis of several mea-
sured symmetric hysteresis loops. The coefficient aBr can
be written in the following form:

aBr = aBbr + (aBur − aBbr)d
p
Br, (5)

where dBr = [H0 −Hb(B0)]/[Hu(B0)−Hb(B0)] (Fig. 2).
The coefficient dpBr influences the “speed” of changes

of the coefficient aBr. The value of the exponent p in re-
lationship (5) can be greater or smaller than one and
it should be experimentally determined for the tested
ferromagnetic material, e.g., an electrical steel sheet.
When we assume that kHr has a constant value in the
small enough neighborhood of the point B0, then for
B = B0 on the basis of (3) the following relationship
can be written:

dHr(B0)

dB
=

dHu(B0)

dB
+ kBr[Hu(B0)−H0]. (6)

The derivative dHr(B0)/dB has to be equal to aBr,
so the value kBr can be determined using the following
relation:

kBr =
aBr − dHu(B0)

dB

Hu(B0)−H0
. (7)

The value aBr for the initial point P (H0, B0) is de-
termined on the basis of (5) and next value of the co-
efficient kBr is calculated using (7). This value is in-
serted into relation (3) and for the next value of the flux
density B, the new value of the field strength Hr(B)
is calculated.

When the value of the flux density B decreases, then
the coefficient aBd (with the similar meaning as aBr) can
be written in the following form:

aBd = aBud + (aBbd − aBud)d
p
Bd, (8)

where dBd = [Hu(B0) − H0]/[Hu(B0) − Hb(B0)],
aBbd is equal to the derivative dHd/dB when the
point P (H0, B0) is situated on the bottom limiting
curve Hb(B).

Similarly as previously, the value aBud is determined
on the basis of several measured symmetrical hysteresis
loops. In this case, the derivative dHd/dB is in the range
(aBbd, aBud) for the decreasing flux density B. There-
fore, the coefficient kBd is determined similarly as kBr:

kBd =
aBd − dHb(B0)

dB

H0 −Hb(B0)
. (9)

The distances between the point P and the curves of
the limiting hysteresis loop are determined for initially
assumed point P (B0, H0). Depending on changes of the
flux density B the coefficients aBbr, aBud are calculated.

Fig. 3. Family of the first-reversal curves for: (a) in-
creasing flux density value, (b) decreasing flux den-
sity value; ferromagnetic material — transformer sheet
M120-27S.
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Fig. 4. Examples of minor loops determined using the
inverse model of the magnetic hysteresis.

Fig. 5. Examples of minor loops, when the flux density
has a constant component besides a variable component
when the one starting point is in the center of the co-
ordinate system and: (a) the second starting point P1
is on the left curve of the limiting hysteresis loop, (b)
the second starting point P2 is on the right curve of the
limiting hysteresis loop.

Fig. 6. Comparison of the measured and calculated
hysteresis loops: (a) dynamo sheet M530-50A, (b) trans-
former sheet M120-27S; measured — black lines, calcu-
lated as B = f(H)— blue lines, calculated asH = f(B)
— red lines.

Then the coefficients aBr, kBr or aBd, kBd are determined
and a new value of the field strength Hr or Hd is calcu-
lated. Figure 3 shows a family of the first-reversal-curves
for increasing and decreasing values of the flux density.
In turn, Fig. 4 presents minor loops for different changes
of the flux density. These loops are determined using
the proposed inverse model.

Figure 5 presents examples of minor loops, when
the flux density has a constant component. Regardless of
the starting point, the minor loops in the steady states
have to be the same. These states of the minor loops oc-
cur after several cycles of the flux density changes, unlike
the classical Preisach model, where this state is achieved
after a single cycle of the flux density (or field strength)
changes.

In the proposed inverse model of the magnetic hystere-
sis any trajectory is uniquely determined by the coordi-
nates of the starting point (Fig. 3). It fulfills the first one
of Madelung’s rules. The second one of these rules says
that any hysteresis loop is closed (the so-called “return-
point-memory”). Corresponding points on the minor
loops are symmetrical with respect to the center of the
coordinate system, i.e., points A1 and A2, B1 and C2,
B2 and C1, and so on. However, it takes place only in
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Fig. 7. Comparison of the measured and calculated
hysteresis loops: (a) ferrite Mn–Mg, (b) ferromagnetic
material YuN14DK24; measured loops — black lines,
calculated as B = f(H) — blue lines, calculated as
H = f(B) — red lines.

the steady state of the minor loops (Fig. 4), because they
drift gradually to this state. This is confirmed among
others in [28, 29]. The minor loops in the steady states
determined for assumed changes of the flux density are
the same independently of the coordinates of the starting
point (Fig. 5). It refers to the third Madelung rule (“con-
gruency property”). Obviously, the hysteresis loops for
only alternating changes of the flux density are symmet-
ric with respect to the center of the coordinate system
(fourth rule).

Calculations with the use of the inverse model of the
magnetic hysteresis were made for different electrical
steel sheets. For example, Fig. 6a shows the compari-
son between measured and calculated hysteresis loops of
the dynamo sheet M530-50A, and Fig. 6b presents a sim-
ilar comparison regarding the loops of the transformer
sheet M120-27S. In turn, Fig. 7 presents comparison of
the measured and calculated hysteresis loops for ferrite
Mn–Mg [30] and for ferromagnetic material YuN14DK24,
that is applied in hysteresis motors.

4. Conclusions

The field strength changes as the dependence of the
flux density are written in terms of simple formulae.
Therefore, they may be relatively easily inserted into
equations of the magnetic field distribution. The times of
numerical calculations are shorter than in other models.
In order to apply this method the limiting hysteresis loop
of the given electrical steel sheet has to be known. Addi-
tionally, some minor loops should be measured to choose
the attenuation coefficients of the “transient” components
correctly.

It is worth underlining that satisfactory calculation re-
sults can be obtained when the attenuation coefficients
of the “transient” components have the same and con-
stant values. As a result of this, calculation times can
be significantly shortened. This is especially important
in calculations of the magnetic field when the hysteresis
phenomenon has to be taken into account in a large num-
ber of elementary segments resulting from the division of
the magnetic field space.

The hitherto proposed models of the magnetic hystere-
sis refer to the “classical” shape of the hysteresis loop, but
almost none of them show how to approximate changes
of both the flux density and field strength in transformer
sheets for magnetization directions other than the rolling
direction. The proposed hysteresis model with some
modifications can be used in studies of magnetization
processes in these sheets [28].

The authors hope that this paper will encourage physi-
cists to discuss on the formulation of the hysteresis model
that will be based on physical, not just magnetic, proper-
ties of the ferromagnetic materials, especially that since
two years the authors have tried to take into consid-
eration the crystallographic structure of electrical steel
sheets in the modeling of magnetization processes.
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