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Interferometric Signatures of Electron Transfer
through Majorana Bound States
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In semiconducting nanowires deposited on top of s-wave superconductors, the combined effect of induced
superconducting order, strong spin-orbit coupling, and magnetic field can lead to the realization of topologically
non-trivial edge states. According to Kitayev’s model, such states fulfill the axioms of Majorana quasiparticles.
Recent development of quantum dot-nanowire hybrids provides useful tools to perform analysis which goes beyond
mere observation of such states. One of the most challenging tasks is to demonstrate the nonlocal character of
these states. Considering two quantum dots coupled to opposite edges of a chain hosting Majorana quasi-particles,
we show that long range electron transfer through the Majorana states can be demonstrated by measurement
of local currents. We show that the scattering of electron on one dot gives rise to interferometric signatures on
the quantum dot connected to the opposite side of the nanowire.
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1. Introduction

In famous “toy” model introduced by Alexei Kitaev [1],
it was shown that one dimensional spinless p-wave su-
perconducting chain can host two unpaired edge states
which obey the axioms of Majorana quasiparticles. Pre-
dicted states are immune to local disturbances. High
resistance to decoherences is provided by their nonlocal
nature. Two edge states η1, η2 form one ordinary but
highly nonlocal fermion f = 1√

2
(η1 + iη2), and as a con-

sequence local disturbances have no impact on Majorana
zero modes [2]. This property makes Majorana quasipar-
ticles good candidates for being a quantum information
storage medium.

In recent years number of works have been addressed to
realize the systems in which the fingerprints of such states
can be detected [3–9]. In most widely explored realiza-
tions, semiconducting nanowire (e.g. InAs) with strong
spin-orbit interaction is covered by a layer of s-wave su-
perconductor (e.g. Al). In presence of magnetic field,
for large enough Zeeman splitting, localized Majorana
bound states (MBS) appear at the ends of the nanochain.
In other realizations monoatomic chains of magnetic
atoms are placed directly on top of polished super-
conductor with strong spin-orbit interaction [6, 7, 9].
Although experiments confirm existence of zero modes at
the ends of such nanowires, the nonlocal nature of mea-
sured states is more elusive and signatures confirming
this property have not been found yet. Some theoreti-
cal works have proposed the schemes to test nonlocality
via crossed Andreev reflections [10–12]. Others, how-
ever, suggested that for vanishing overlap between edge
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states cross-correlations can not develop and the process
is suppressed [13, 14]. New proposals for testing of MBS
nonlocality are highly requested.

Our idea is based on the measurement of features orig-
inating from the long-range electron scattering between
two quantum dots (QDs) coupled to opposite edges of
a topological chain. Scattering between two distant dots
is possible due to the inherent nonlocal property of topo-
logical chain edge states. We predict that such scattering
leads to the appearance of characteristic Fano features
in QD’s spectral function. We show that the manipula-
tion of a “local” model parameters associated only to one
of the dots, can cause a shift of interferometric signatures
appearing in the second dot. We inspect the conditions
at which features of such long-range scattering emerge in
the spectral function of quantum dots.

2. Formulation of the problem

We analyze the structure schematically depicted
in Fig. 1, where monoatomic chain of magnetic atoms
(e.g. Fe atoms) is placed on top of s-wave superconduc-
tor (SC) with strong spin-orbit interaction (e.g. Pb sur-
face). We assume that this nanowire is driven into a su-
perconducting topological phase. In such conditions edge
states of the nanowire can be represented by two topolog-
ically nontrivial zero-energy states η1 and η2 called Ma-
jorana modes. Due to the finite length of the nanowire,
wavefunctions of these two states overlap on each other.
The factor εm stands for tunneling rate between two edge
states and it is proportional to e−ξ/L, where ξ stands for
superconductor’s coherence length and L is the length of
the nanowire. In this work we use the term “topological
chain” to describe nanowire with two Majorana modes in-
duced on its opposite edges. In proposed architecture two
quantum dots (QD1, QD2) placed on top of SC substrate
are tunnel-coupled to opposite edges of such topologi-
cal chain. Experimentally such quantum dot-nanowire
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Fig. 1. The schematic illustration of the analyzed sys-
tem. It consists of two quantum dots (QD1 and QD2)
coupled to opposite sides of a topological chain placed
on top of conventional superconductor. Majorana quasi-
particles are represented by self-hermitean operators η1,
η2. The blue curves over the chain atoms illustrate
schematically the probability amplitudes of the Majo-
rana fermion wave functions. The overlap between edge
states is represented by the term εm. Grey cone over
QD1 represents metallic STM tip.

hybrids can be achieved either by using depleting gates
or by placing nonmagnetic adatoms at the end of a chain.
For semiconducting nanowires, such hybrids can also be
realized by selectively removing the SC layer from the end
of the wire [8].

We inspect the features of long-range electron scat-
tering mediated by edge states of the topological chain.
Two bound states at the edges of the chain form one ordi-
nary fermionic state. Therefore, the information on elec-
trons injected into one end of a chain can be transferred
into its opposite side, and further into a second quantum
dot. As a consequence electron transmitted through one
quantum dot can be scattered by an exchange of elec-
trons between the second dot and nanowire. In other
words, in our system we consider the topological chain
as a bridge that couples two spatially separated quantum
dots. Additionally, we assume that both QDs are coupled
to external fermionic reservoirs but with different cou-
pling strengths. In the schematic view (Fig. 1) STM tip
suspended over one of the dots is considered as a strongly
coupled fermionic reservoir. The influence of the envi-
ronment on QD2 is taken into account as (very) weak
interaction with some fermionic reservoir. The broaden-
ing of energy levels in nanoscopic heterostructures is con-
trolled by tunneling rates to fermionic reservoirs. There-
fore, in such circumstances disproportion in broadenings
for each quantum dot obeys the conditions necessary for
the appearance of Fano-like resonances. In absence of
topological chain, the features of such quantum interfer-
ence were predicted and observed in double quantum dot
systems in both metallic [15–17] and superconducting en-
vironment [18–22].

3. Model

Considered heterostructure, including two quantum
dots, is placed on top of s-wave superconductor. In our
approach we will focus on energies deep inside the su-
perconducting gap (|ω| � ∆). In this, so-called
deep superconducting atomic limit, the influence of

a superconducting background on each quantum dot can
be reduced to static sources and sinks of local pairs [23–
25]. Hamiltonian of each quantum dot (j = 1, 2) placed
in proximity of superconductor, in noncorrelated regime
can be represented by

ĤQDj =
∑
σ

εj d̂
†
jσd̂jσ −

1

2
ΓSj

(d̂j↑d̂j↓ + H.c.), (1)

where d̂jσ(d̂†jσ) stand for the creation (annihilation) op-
erator of σ spin electron on the j-th dot and ΓSj

repre-
sents the coupling constant between j-th dot and super-
conducting substrate. Quantum dots are connected to
the opposite edges of the topological chain. Effectively
each dot is tunnel-coupled to the corresponding Majo-
rana bound state. Low energy physics of the chain and
its coupling to the dots can be expressed by [26]

ĤMQD = iεmη̂1η̂2 +
∑
j=1,2

λj(d̂j↑η̂j + η̂j d̂
†
j↑), (2)

where self-hermitean operators η̂†j = η̂j represent two
edge states and εm stands for overlap between them.
The last term of (2) stands for electron hopping between
j-th dot and corresponding (j-th) MBS. It is convenient
to express Majorana states in terms of ordinary fermionic
operators η1 = 1√

2
(f̂+f̂†), η2 = i√

2
(f̂−f̂†). Using the lo-

cal gauge transformation (d̂2 → i d̂2) and alternative dot-
chain coupling strengths tj =

λj√
2
, Hamiltonian (2) can

be rewritten in the following form
ĤMQD = εmf̂

†f̂ + t1(d̂†1↑ − d̂1↑)(f̂ + f̂†)

+t2(d̂†2↑ + d̂2↑)(f̂ − f̂†). (3)
Additionally, we assume that both dots are hybridized
with ordinary fermionic reservoirs (e.g. with metallic
STM tip). Such reservoirs are represented by

ĤNj =
∑
k,σ

ξjkC
†
jkσCjkσ,

where energy of the electrons ξjk are measured with re-
spect to their chemical potential µj . Electron tunneling
between j-th dot and j-th reservoir is represented by

ĤTj
=
∑
k,σ

Vjk

(
Cjkσd̂

†
jσ +H.c.

)
.

In further calculations we will use the wide band limit
coupling constant ΓNj

= 2π
∑
k |Vjk|δ(ω − ξk) between

j-th dot and corresponding reservoir.
The whole heterostructure (depicted in Fig. 1) is given

by following Hamiltonian

Ĥsys =
∑
j

(ĤQDj + ĤNj + ĤTj ) + ĤMQD. (4)

Information on density of states for each quantum dot is
encoded in Fourier transform of single-particle retarded
Green’s function Gj11(ω + i0+) = 〈〈d̂j↑d̂†j↑〉〉. The above-
presented model is exactly solvable (as long as we focus
on the noncorrelated regime) and solution can be pro-
vided e.g. by the Green’s function equation of motion
technique (EOM).
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Introducing auxiliary factors

aj(ω) = ω − εj + iΓNj −
ΓSj

ω + εj + iΓNj

and bj(ω) = −[aj(−ω)]∗,

this method yields

Gj11(ω) =

(
2t2j − bjω

) (
aj̄bj̄ω − 2t2

j̄
(aj̄ + bj̄)

)
+ aj̄bjbj̄ε

2
m(

−ajbjω + 2ajt2j + 2bjt2j
) (
aj̄bj̄ω − 2t2

j̄
(aj̄ + bj̄)

)
+ ajaj̄bjbj̄ε

2
m

,

where j̄ = 1 if j = 2 (and counterwise j̄ = 2 if j = 1).
Density of states for each dot is represented by imaginary
part of corresponding Green’s function

ρj(ω) = − 1

π
Im
(
Gj11(ω + i0+)

)
.

4. Signatures of scattering

To properly describe our results let us first recall some
findings on proximity effect and its interplay with Ma-
jorana modes. When QD is connected to s-wave su-
perconductor it adopts some SC properties. As a re-
sult, a single-particle level (ε) evolves into two quasi-
particle Andreev states (also called Yu Shiba Rusinov
states) [23, 24]. In the deep superconducting atomic

limit, these states are located at ±
√

( 1
2
ΓS)

2
+ ε2, where

ΓS denote coupling strength between quantum dot and
superconducting electrode. If such QD is connected to
one end of a topological chain (with coupling strength t),
two trivial Andreev states are accompanied by two
“molecular” levels appearing as a result of the coales-
cence of Andreev quasiparticle states with Majorana
edge states [27–29]. This additional states are located

at ±
√

( 1
2
ΓS)

2
+ ε2 + (2t)2. The broadening of all these

states is controlled by coupling of the dot to fermionic
reservoirs (such as metallic STM tip).

In a considered system, with two QD’s coupled to
opposite edges of a topological wire, the metallic STM
tip is suspended over one of the dots. Tip-dot cou-
pling strength is given by wide-band limit coupling
constant ΓN1

=
∑
k VkN1δ(ω − ξkN1) which we use

as the energy unit. We assume that the second dot
weakly interacts with some external fermionic reservoir
(ΓN2 = 0.001ΓN1). As a result, all four states appear-
ing in QD1 (two trivial ABS and two molecular levels)
are significantly broadened while states at QD2 remain
quasi-discrete.

In Figs. 2 and 3 we present the local density of states
(LDOS) of QD1 and QD2. The initial level of both
dots were established as zero (ε1 = ε2 = 0). We as-
sumed that coupling between dots and the supercon-
ducting substrate is slightly higher than the coupling
of QD1 to STM tip (ΓS1 = ΓS2 = 2ΓN1). This re-
flects the assumption that both dots are placed directly

Fig. 2. Density of states for QD1 (solid red line) and
QD2 (dashed blue line) obtained for following model
parameters ΓS1 = ΓS2 = 2ΓN1 , ΓN2 = 0.001ΓN1 , t1 =√
2ΓN1 , t2 =

√
3/2ΓN1 , εm = 0.1ΓN1 .

Fig. 3. Closeup of a resonant feature presented
in Fig. 2 obtained for the same model parameters.

on top of the superconducting substrate. Coupling of
each dot to corresponding edges of a chain was set to
t1 =

√
3/2, t2 =

√
2. Additionally, we assume small

but finite overlap between the edge states εm = 0.1ΓN1 .
Although true Majorana zero mode is realized with
vanishing εm, in physical systems finite length of a
chain enforces a finite overlap between these states.
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Fig. 4. Density of states for QD1 (dashed red line)
and QD2 (solid blue line) obtained for following model
parameters ΓS1 = ΓS2 = 2ΓN1 , ΓN2 = 0.001ΓN1 ,
t1 = 4ΓN1 , t2 = 3.8ΓN1 , εm = 0.02ΓN1 . Inset shows
the closeup of a resonant interferometric feature near
molecular level of QD2.

Using such assumptions we obtain two ordinary and
two molecular states in the density of states of each dot.
According to the description above, the states on QD1

are wide while the states on QD2 remain narrow (quasi-
discrete). Trivial ABS states for both dots appear
at ω = ±ΓN1

. Molecular states for QD1 appear at
ω = ±3ΓN1

, while for QD2 ω = ±2ΓN1
. Additionally

in LDOS of a QD1 we predict well-pronounced asym-
metric features characteristic for scattering on a narrow
level. Such result indicates that the electrons transferred
through one dot “feel” the existence of discrete levels on
the opposite side of a topological chain. Such quantum
interference between broad levels of QD1 and discrete
levels of QD2 produces the characteristic asymmetric
Fano-like profiles in LDOS of QD1. Remarkably, we ob-
serve such features only for energies equal to energy of

molecular levels of QD2 (i.e. ω = ±
√

( 1
2
ΓS2

)
2

+ (2t2)2)
and not for trivial Andreev states. This indicates that
only molecular states of QD2 take part in the scattering,
while information on trivial Andreev states is not trans-
ferred through topological chain. One should note that
the position of molecular levels of QD2, and thus position
of interference patterns observed in QD1 can be tuned ei-
ther by changing dot-chain coupling strength (t2) or more
realistically by application of additional gate voltage that
manipulates initial dot level (ε2). We find that charac-
teristic features provided by long-range scattering appear
only for a finite overlap of edge states (εm). Although
the finite overlap between edge states is perfectly rea-
sonable from the experimental point of view (as chain’s
length must also be finite), such restriction does not obey
the conditions for a true Majorana zero mode. Nev-
ertheless, with careful tuning of model parameters, we
predict that asymmetric features should be noticeable
even when the overlap between edge states is over two
magnitude orders lower than couplings between dots and

chain (see Fig. 4).

5. Conclusions

In the presented setup we predicted the appearance of
interferometric Fano-like profiles, provided by informa-
tion transfer through edge states of the topological chain.
We obtained that the position of such features, appearing
on one side of a chain (one dot) can be tuned by manip-
ulation of parameters associated locally to the opposite
side of the nanowire. Predicted resonances appear for
small but finite overlap of nanochain edge states.
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