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We show the procedure for the secondary quantization of the electromagnetic field in an inhomogeneous
medium, based on the formalism of the scattering matrix. We demonstrate the electromagnetic field profiles,
which are obtained as a result of applying the scattering matrix formalism and prove their orthogonality. Finally,
we derive the Hamiltonian of the system. The obtained procedure allows us to use more complete representation
of quantum theory in a layered medium to describe various effects in layered structures.
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1. Introduction

The description of the interaction of radiation with the
matter has been the subject of theoretical and experimen-
tal research in recent years. It is also one of the important
problems in modern physics [1, 2].

Ley and Loudon [3] were one of the first researchers
who developed a procedure for the secondary quantiza-
tion of the electromagnetic field in layered structures.
In this work, the electromagnetic field is quantized in
terms of a continuous set of mode creation and annihila-
tion operators. Later, de Martini et al. [4] used second
quantization in inhomogeneous structures to calculate
the probability of spontaneous emission in layered struc-
tures bounded by semi-infinite media. In these works,
the structure of the field modes in the space with the
inhomogeneity was assumed to be identical to the mode
structure of a homogeneous medium obtained using a pe-
riodic BC (the Born–von Karman boundary condition).
In the case of inhomogeneous structures, the approach to
the problem of the mode structure of the field based on
a periodic BC is not exact and self-consistent, because
the presence of an inhomogeneity can lead to significant
changes in the mode structure, which is obtained by ap-
plying a periodic BC, which in turn can lead to inaccu-
racies in analysis of systems of finite size.

In Refs. [5–7], the method for quantizing of the electro-
magnetic field in media containing inhomogeneity (which
is proposed to be called S-quantization) was developed.
The method is based on equating the amplitudes of the
wave incident on a quantization box containing inhomo-
geneity with the amplitudes of the transmitted waves,

∗corresponding author; e-mail: leha.s92.92@gmail.com

which is equivalent to equating eigenvalues of the scatter-
ing matrix (S-matrix) to the unit. Unlike the traditional
quantization procedure, based on the periodic bound-
ary conditions, S-quantization provides a strict and self-
consistent description of the modes of the electromag-
netic field and the density of states.

In this paper, we have demonstrated the electromag-
netic field states in a layered medium (for two and three
layers), which were obtained using the boundary con-
ditions from papers [5–7] (S-conditions). We also have
proved the orthogonal nature of such states and have de-
veloped a procedure for the secondary quantization of
the electromagnetic field in layered structures by intro-
ducing the creation and annihilation operators for the
field modes obtained from S-conditions.

2. Model and methodology

Consider the structure consisting of an arbitrary num-
ber of homogeneous layers. Each layer of the medium
has a thickness Li and a refractive index ni, independent
of frequency. Electromagnetic waves incidence arises on
the structure to the left and right perpendicular to the
layers (Fig. 1).

The general equation for finding the amplitude reflec-
tion and transmission coefficients is as follows:(

t1E0 + r2EL
EL

)
= M̂ (nN , LN )

k=2∏
k=N

N̂ (nk−1, nk)

×M̂ (nk−1, Lk−1)

(
E0

r1E0 + t2EL

)
, (1)

where t1 and t2 are the transmission coefficients for the
waves that fall on the left and the right of the structure,
respectively. r1 and r2 are the reflection coefficients for
the waves that fall on the left and the right of the struc-
ture, respectively. E0, EL are the amplitudes of waves
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Fig. 1. N layers with the refractive indices ni and
thicknesses Li. Waves incident on the structure to the
left and right perpendicular to the layers.

incident on a structure. The matrix M̂ is the homoge-
neous media transfer matrix, and the matrix N̂ is the
media transfer matrix

M̂ (ni, Li) =

(
e ik0niLi 0

0 e− ik0niLi

)
, (2)

N̂ (ni, nj) =
1

2nj

(
ni + nj nj − ni
nj − ni ni + nj

)
, (3)

where k0 is a wave vector. The multiplication of the
matrix in (1) occurs in the reverse order, from k = N
to k = 2.

Reference [5] proposes the procedure of quantization
of electromagnetic field, based on equating to unity
eigenvalues of the scattering matrix of the system, or
by equating incoming amplitudes and outgoing am-
plitudes. S-quantization provides an exact and self-
consistent description of modes of the electromagnetic
field. The scattering matrix for this structure is as fol-
lows:(
E+ (L)

E− (0)

)
=

(
t1 r2
r1 t2

)(
E+ (0)

E− (L)

)
= Ŝ

(
E+ (0)

E− (L)

)
.

(4)
Equate the eigenvalues of the scattering matrix to unity

(t1 − 1)(t2 − 1)− r1r2 = 0. (5)
Using this expression, we can find the spectrum of the
eigenfrequencies of the system based on the S-condition.
The eigenvector of the scattering matrix consists of
the complex amplitudes of the fields, incident on the
structure

B =

[
1,− t1 − 1

r2

]
. (6)

The solution of Eq. (5) ensures the spectrum of eigenfre-
quencies, with which we can calculate the profile of the
electromagnetic field of a mode using transfer matrices.

The profile of the electromagnetic field for∑i−1
k=1 Lk < z <

∑i
k=1 Lk:(

E+(z)

E−(z)

)
= M̂

(
ni, z −

i−1∑
k=1

Lk

)
i∏

k=2

N̂ (nk−1, nk)

×M̂ (nk−1, Lk−1)

(
E0

r1E0 + t2EL

)
. (7)

3. Results and discussions

As the case of one layer coincides with the case of con-
ditions BC, and the cases of many layers are too large in
number, we will consider only the cases of two and three
layers.

We will consider a structure consisting of two homo-
geneous layers with refractive indices n1, n2, and thick-
nesses L1, L2 (L = L1 + L2), on which the incidence
of the electromagnetic wave takes place on the left and
right, perpendicular to the layers. From Eq. (1) we get
the values t1, t2, r1, r2:{

r1 = e2 ik0n1L1r12,

r2 = e2 ik0n2L2r21,
(8)

{
t1 = e ik0n1L1 e ik0n2L2t12,

t2 = e ik0n1L1 e ik0n2L2t21,
(9)

where r12 = n1−n2

n1+n2
, t12 = 2n1

n1+n2
, r21 = −r12,

t21 = 2− t12. Substituting these values into the equa-
tion for the eigenfrequencies (5), we obtain the values of
the wave vector

k0 =
2πN

n1L1 + n2L2
, N ∈ Z. (10)

From this expression, we find the spectrum of eigenfre-
quencies. The eigenvector for this case

B =
[
1, e2 ik0n1L1

]
. (11)

Orthogonality for the profiles of the electromagnetic field
of modes is found (Ref. [3]) from the expression
L∫

0

n2EN (z)E∗
N ′ (z) dz =

L∫
0

n2(E+
N (z) + E−N (z))(E+

N (z) + E−N (z))∗dz. (12)

Substituting the field values from (7) and the values from
(8–11), we get
L∫

0

n2EN (z)E∗
N ′ (z) dz = 2E2

0(n
2
1L1 + n22L2)δN,N ′ . (13)

Thus, it is clear that the profiles are orthogonal to each
other.

Next we will consider the structure that consists of
three layers. For the simplicity of formulae, we intro-
duce additional conditions: n1L1 = n2L2 = n3L3, and
n1 = n3. We introduce the notation k0n1L1 = α. From
Eq. (1) we get the values t1, t2, r1, r2:

r1 = r2 = r = e2 iα
r12 − r12 e2 iα

1− r212 e2 iα
, (14)

t1 = t2 = t = e3 iα
t12t21

1− r212 e2 iα
. (15)

If we substitute values into the equation for the eigenfre-
quencies (5), we obtain the values of e iα:
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e iα1 = 1,

e iα2 = − t122 ±
√(

t12
2

)2 − 1,

e iα3 = − t212 ±
√(

t21
2

)2 − 1.

(16)

We got three kinds of solutions (denoted by indices).
From this expression, we find the spectrum of eigenfre-
quencies. The eigenvector for the case α2: B = [1, 1], for
the case α3: B = [1,−1]. Case α1 coincides with the so-
lution with the BC. The eigenvector can be the same as
for condition α2 or α3. Orthogonality for the profiles of
the electromagnetic field of modes is found from the ex-
pression (12).

For α1 (B = [1, 1]):
L∫

0

n2EN (z)E∗
N ′ (z) dz =

E2
0(n

2
1L1 + n22L2 + n23L3)δN,N ′ . (17)

For α1 (B = [1,−1]):
L∫

0

n2EN (z)E∗
N ′ (z) dz =

E2
0(n

2
1L1 + n21L2 + n23L3)δN,N ′ . (18)

For α2:
L∫

0

n2EN (z)E∗
N ′ (z) dz =

E2
0(n

2
1L1 + n1n2t12L2 + n23L3)δN,N ′ . (19)

For α3:
L∫

0

n2EN (z)E∗
N ′ (z) dz =

E2
0(n

2
1L1 + n1n2t21L2 + n23L3)δN,N ′ . (20)

The different values before δN,N ′ found in (17–20) will
affect the normalization coefficient. The electromagnetic
field is normalized so that the integral of the energy
density of the electromagnetic field of the mode over
the “quantization box” associated with the energy of
zero-point vibrations of the mode [8]:

2

4π

L∫
0

n2EN (z)E∗N (z) dz =
}w
2
. (21)

Here it is easy to calculate the normalization factor

E0 =

√
π}wk
Vk

, (22)

where Vk = n21L1 + n22L2 for two-layer structure, and
Vk = n21L1 + n22L2 + n23L3 for three-layer structure
for case α1 B = [1, 1]) etc. Now, substituting (22)
into (1) and (17–20), we obtain the classical form for
orthogonality

L∫
0

nEN (z)E∗
N ′ (z) dz = 2π}wδN,N ′ . (23)

The electromagnetic field is quantized by introducing
the operators of the creation and annihilation of modes.
The creation and annihilation operators for standing
waves are â+k and âk. The following commutation re-
lations hold for them:[

âk, â
+
k′

]
= δk,k′ . (24)

When quantizing only in the XY plane and with one lin-
ear polarization, the usual quantization procedure of the
electromagnetic field is given by the electromagnetic field
operator [3]:

Ê+ (z, t) = i

∞∫
0

âkEk e
− iwktdk. (25)

The Hamiltonian can be written as

Ĥ = 2

L∫
0

dz
1

4π
n2 (z) Ê− (z, t) Ê+ (z, t) , (26)

and this reduces with the use of the orthogonality rela-
tions (23) and the commutation relations for operators
(24) to the expected form

Ĥ =

∞∫
0

}wkâ+k âk dk. (27)

The resulting procedure of secondary quantization com-
plements and generalizes the quantum-optical description
of the electromagnetic field in a layered structure, which
was developed earlier, particularly in [1–7]. The expres-
sions obtained here will allow us to use a more complete
representation of quantum theory in a layered medium
to describe various effects in layered structures.

4. Conclusion

In this paper, we have derived the form of the pro-
files of the eigenmodes of the electromagnetic field in
a layered structure, which is obtained as a result of
applying S-quantization. We have proved orthogonal-
ity of these eigenmodes of a layered structure and de-
veloped a procedure for the secondary quantization of
the electromagnetic field in layered structures, based on
S-quantization. This representation provides a rigor-
ous and self-consistent description of various parameters,
in particular, electromagnetic field profiles, the density
of state, and probability of spontaneous emission for ar-
bitrary layered structures.
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