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We theoretically investigate the four-wave mixing (FWM) process based on hybrid optomechanical systems
consisting of a cigar-shaped Bose-Einstein condensate (BEC), trapped inside an optical cavity with a moving end-
mirror. We can use a strong control field driving the cavity to control the bistable behavior of the steady-state
photon number, the phonon number of the collective oscillation of the BEC and the phonon number of the me-
chanical resonator. Furthermore, we show how optomechanically induced transparency (OMIT) in the hybrid
optomechanical systems can be used to control the four-wave mixing and enhance the intensity of the four-wave
mixing. The calculated results show that the effect of the four-wave mixing can be controlled effectively by the pump
strength, the frequency difference between the BEC and the moving end mirror, cavity decay rate, and effective
coupling strength of the optical field with the moving mirror. Finally, the number peak of FWM can be controlled
by modulating the frequency difference between the BEC and the moving end mirror and effective coupling strength
of the optical field with the moving mirror.
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1. Introduction

Optomechanical systems have become a powerful plat-
form for manipulating mechanical resonators and cavity
fields [1, 2]. There are many kinds of optomechanical sys-
tems, such us: two fixed mirrors [3], one fixed and an-
other movable [4], a micro-mechanical membrane oscillat-
ing [5] and a Bose-Einstein condensate (BEC) inside two
fixed cavity, and so on [6, 7]. Recently, optical bistabil-
ity has been extensively studied in the optomechanical
systems [8–12]. On the one hand, the optical bistabil-
ity can be obtained in the optomechanical system, where
the cavity field is coupled to the mechanical resonator via
the radiation pressure. On the other hand, in the pres-
ence of a strong control field, optical response of the op-
tomechanical system to a weak probe field can be mod-
ified, leading to the phenomenon of optomechanically
induced transparency (OMIT). Particularly, in resolved
sideband regimes (the dissipation rate of the optical mode
is smaller than the resonance frequency of the mechanical
resonator), optomechanically induced transparency have
been observed in various optomechanical systems [13–16].
Worldwide research in OMIT includes optical bistablility
and four-wave mixing (FWM) [17], single photon quan-
tum router [18], superluminal and ultraslow light propa-
gation [19, 20], charge measurement, and so on [21–23].

As everyone knows, both in experiment and in the-
ory the four-wave mixing has attracted considerable at-
tention. In experiment, a lot of research has been
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focussed on this aspect for a long time. There are
reports of the enhancement of nondegenerate FWM
based on EIT in a Λ-type three-level system of rubid-
ium atoms [24]. In theory, there are reports of FWM
based on the asymmetric quantum wells where OMIT
has been observed [25] and a coupled Bose–Einstein con-
densate cavity system [26]. Herein, we show how hybrid
optomechanical systems can be used for realization of
the four-wave mixing by using OMIT.

In this paper a new kind of the four-wave mixing based
on the hybrid optomechanical systems are designed,
and the transmission properties are investigated numer-
ically. Optomechanical systems with a cigar-shaped
Bose-Einstein condensate trapped inside an optical cav-
ity with a moving end-mirror have many advantages.
Firstly, a strong coupling regime can be easily reached
even with an ultralow pump power [27, 28]. Further-
more, in the hybrid optomechanical systems, the intra-
cavity laser field has a dual role: it excites a momen-
tum side-mode of the condensate and acts as a nonlinear
spring [29]. More importantly, the BEC can be trapped
on a small scale and thus a robust miniature device can
easily be implemented [30–32].

Motivated by these developments, we study the optical
bistability and FWM in a hybrid optomechanical system
in Sect. 2, where a cigar-shaped BEC is trapped inside
an optical cavity with a moving end-mirror. We find
the bistable behavior of the steady-state photon num-
ber, the phonon number of the collective oscillation
of the BEC and the phonon number of the mechani-
cal resonator. The numerical results in Sect. 3 show
that the effect of the FWM can be controlled effectively
by the pump strength, the frequency difference between
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the BEC and the moving end mirror, cavity decay rate,
and effective coupling strength of the optical field with
the moving mirror. We discuss the influence of thermal
noise on the FWM in Sect. 4. A summary is presented
in Sect. 5.

2. The physical model

The system considered in this paper is shown in Fig. 1,
where a cigar shaped BEC of N atoms of 87Rb in its
ground state is trapped in an optical ultrahigh-finesse
Fabry-Pérot cavity. One mirror is free to move in the di-
rection parallel to the cavity axis. In presence of radia-
tion pressure from the cavity, the mirror moves harmon-
ically with a frequency ωm and is at equilibrium temper-
ature T [18]. The cavity field is driven by a strong pump
laser field accompanying a weak probe laser field along
the cavity axis. The Hamiltonian of the optomechanical
systems consisting of a cigar shaped BEC trapped inside
an optical cavity with a moving end-mirror as

Ĥ = ~ωcĉ†ĉ− i~Epu(ĉe iωput − ĉ† e− iωput)

− i~Epr(ĉe iωprt − ĉ† e− iωprt)

+

L∫
0

dxΨ†(x)

[
−~2

2ma

d2

dx2
+ Vext(x)

]
Ψ(x)

+

L∫
0

dxΨ†(x)~U0 cos2(kx)ĉ†ĉΨ(x)

+
~ωm

2

(
p̂2 + q̂2

)
− ~Gĉ†ĉq̂, (1)

where the first term describes the energy of the intra-
cavity field, ωc is the cavity frequency, ĉ is the cavity
field’s annihilation operator. The second and third terms
describe the energy of the strong pump laser field and
the weak probe laser field. The classical light inputs
with frequency ωpu and ωpr, Epu, and Epr are related to

Fig. 1. The hybrid optomechanical system consisting
of a Bose-Einstein condensate (BEC) trapped inside
an optical cavity with a moving end-mirror. The cav-
ity with decay rate κ is driven through the fixed mirror
by two lasers with frequency ωpu and ωpr and the end
mirror is free to oscillate at mechanical frequency ωm.

the laser power P , respectively, by |Epu| =
√

2Ppuκ/~ωpu

and |Epr| =
√

2Pprκ/~ωpr. The third and fourth lines
describe the Hamiltonian of the condensate of the BEC
in the case of weak atom-atom interactions and a shal-
low external trapping potential. Here, Ψ(x) is a bosonic
field annihilation operator, ma is the atomic mass, Vext is
the external potential. The fifth term in fourth line de-
scribes the energy of the atom-cavity coupling interac-
tion. Here, U0 = g20/∆a is the maximum light shift which
an atom experiences in the cavity mode, ∆a = ωpu−ωc is
the detuning between the pump laser frequency and
the atomic transition frequency, g0 is the maximum cou-
pling strength between a single atom and a single intra-
cavity photon, and k is the wave number of the light field.
In our paper, we consider the strong coupling regime,
(Ng20/|∆a| � κ, where κ is the decay rate of the cav-
ity and N is the average number of atoms). The last
line describes the Hamiltonian of the moving mirror and
the mirror-cavity interaction, ωm is the free mechanical
frequency, q̂ (p̂) is the position (momentum) operator
of the mirror, while G = (ωc/L)

√
~/mωm is the mirror-

cavity coupling rate.

One can assumed, in the simple situation, that
optical field is weak enough that only the first two
symmetric momentum side modes with moment ±2~k
are excited by fluctuations due to atom-light interaction.
For this purpose the discrete mode approximation is
used. Moreover, only the first two symmetric momen-
tum side modes with moment ±2~k are excited by
fluctuations, as a result of the atom-light interaction.
Considering the parity conservation and the Bogoliubov
approximation, the atomic field operator can be ex-
panded to

Ψ(x) =

√
1

L
â0 +

√
2

L
cos(2kx)â2, (2)

where â0 and â2 are bosonic annihilation operators
for atoms in the zero-momentum state and side-mode
components, respectively. The total number of atoms
is N = â†0â0 + â†2â2. As the population in the zero-
momentum state is much larger than the population
in the side-mode state, we can neglect the population
in the side-mode state. We use â†0â0 ' N , and â instead
of â2. In a rotating frame at a driving field frequency ωpu,
the Hamiltonian of the hybrid optomechanical
systems is [29]

Ĥ = − i~Epu(ĉ− ĉ†)− i~Epr(ĉe iδt − ĉ† e− iδt)

+~∆cĉ
†ĉ+ ~ω

′

mâ
†â+ ~g(â† + â) ĉ†ĉ

+
~ωm

2

(
p̂2 + q̂2

)
− ~Gĉ†ĉq̂ (3)

where ω
′

m = 4ωrec = 4~k2
2m , ∆c = ω

′

c − ωpu,

ω
′

c = ωc + 1
2U0N , g = U0

2

√
N
2 , and δ = ωpr − ωpu.

The first line shows the classical light inputs in the cavity.
The first term in the second line gives the energy of cav-
ity mode, ∆c is the effective Stark-shift detuning, 1

2U0N
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denotes the frequency shift of the empty cavity resonance
induced by the BEC. The second term in the second line
is the energy of Bogoliubov mode of the collective
oscillation of the BEC, where â (â†) denote the anni-
hilation (creation) operator of the Bogoliubov mode.
The third term in the second line describes the coupling
energy between the BEC and the cavity, where g is
the coupling strength. The last two terms in the third
line denote the energy of the mechanical mode and
the mirror-cavity interaction.

According to the Heisenberg equation of motion and
the communication relation [â, â†] = 1, [ĉ, ĉ†] = 1, and
[p̂, q̂] = i , the evolutions of ĉ, â, p̂, and q̂ can be obtained
as follows

dĉ

dt
= −

[
i∆c + κ− iGq̂ + ig(â+ â†)

]
ĉ

+Epu + Epr e− iδt +
√

2κĉin,

dâ

dt
= − iω

′

mâ− igĉ†ĉ− γâ+
√

2γâin,

dp̂

dt
= ωmq̂ −Gĉ†ĉ− γmp̂+ ξ̂,

dq̂

dt
= −ωmp̂. (4)

Here, ĉin, âin, and ξ̂ are the corresponding noises op-
erators. Noise operators depend on the reservoir vari-
ables. We have introduced the input vacuum noise oper-
ators with the zero average values. Then, we deal with
the mean response of the system given by equation for
the expectation values 〈c〉, 〈p〉, 〈q〉, and 〈X〉 of operators
ĉ, p̂, q̂, and X̂ (the latter is defined as X̂ = (â+ â†)/

√
2).

These equations are:
d〈c〉
dt

= −
(

i∆c + κ− iG〈q〉+ ig(〈a〉+ 〈a†〉)
)
〈c〉

+Epu + Epr e− iδt,

d2〈X〉
dt2

+ γ
d〈X〉

dt
+ ω

′

m

2
〈X〉 = −ω

′

mg
√

2〈c†〉〈c〉,

d2〈q〉
dt2

+ γm
d〈q〉
dt

+ ωm
2〈q〉 = ωmG〈c†〉〈c〉. (5)

To solve these equations, we make the following ansatz
〈c(t)〉 = c0 + c+ e− iδt + c− e iδt,

〈X(t)〉 = X0 +X+ e− iδt +X− e iδt,

〈q(t)〉 = q0 + q+ e− iδt + q− e iδt. (6)
Substituting Eq. (6) in Eq. (5), we can obtain:

c0 =
Epu

κ+ i∆c − iGq0 + i
√

2gX0

,

c+ =
Epr + iGq+c0 − i

√
2gc0X+

κ+ i∆c − iGq0 + i
√

2gX0 − iδ
,

c− =
+iGq−c0 − i

√
2gc0X−

κ+ i∆c − iGq0 + i
√

2gX0 + iδ
, (7)

X0 = −
√

2g|c0|2

ω′
m

,

X+ = −
ω

′

m

√
2g
(
c∗0c+ + c∗−c0

)
(ω′
m)

2 − iδγ − δ2
,

X− = −
ω

′

m

√
2g
(
c∗0c− + c∗+c0

)
ω′
m

2
+ iδγ − δ2

, (8)

and

q0 =
G|c0|2

ωm
,

q+ =
ωmG(c∗0c+ + c∗−c0)

ωm2 − iδγm − δ2
,

q− =
ωmG

(
c∗0c− + c∗+c0

)
ωm2 + iδγm − δ2

, (9)

where c0, X0, and q0 are respectively the intracavity field,
BEC, and mechannical displacement for the static solu-
tion. From Eqs. (7)–(9), we obtain

c+ =
Epr [(κ− iδ)− i(∆c − C1 − C2)]

(κ− iδ)2 + (∆c − C1 − C2)2 −D
,

c− =
i(A1B

∗
1ω

′

m +A2B
∗
2ωm)E2

puEpr

[(κ+ iδ)2 + (∆c − C∗1 − C∗2 )2 − (D∗)2]F 2
, (10)

where

A1 = 2g2/(ω
′

m)
2
, A2 = G2/ωm

2,

B1 = (ω
′

m)
2
/
[
(ω

′

m)2 − iδγ − δ2
]
,

B2 = (ωm)
2
/
[
(ωm)

2 − iδγm − δ2
]
,

C1 = A1ω
′

mω0(B1 + 1),

C2 = A2ωmω0(B2 + 1),

D = A1B1ω
′

mω0 +A2B2ωmω0,

F = i∆c + κ− iA1ω
′

mω0 − iA2ωmω0,

ω0 = |c0|2. (11)

According to Eq. (7)-(9), we can obtain the steady
state photon ω0 of the cavity field, phonon number |X0|2
of the collective oscillation of the BEC, and the phonon
number |q0|2 of the mechanical resonator:

E2
pu = ω0

[
κ2 +

(
∆c −

2g2ω0

ωm
− G2ω0

ω′
m

)2
]
,

|X0|2 =
2g2ω2

0

ω2
m

, |q0|2 =
G2ω2

0

(ω′
m)

2 , (12)

Therefore, the steady-state photon number ω0 of the cav-
ity field, phonon number |X0|2 of the collective oscillation
of the BEC, and the phonon number |q0|2 of the mechani-
cal resonator depend on each other. This form of coupled
equations are characteristic of optical multistability.

We use then the input-output relation which is valid
for one-sided open cavity:



Controllable Four-Wave Mixing Based on Hybrid BEC-Optomechanical Systems 447

cout(t) = cin(t)−
√

2κc(t), (13)
where cin and cout are the input and output operators.
For our hybrid optomechanical systems, we can obtain
the output field

cout(t) =
[
(Epu/

√
2κ)−

√
2κc0

]
e− iωput

+
(
Epr/

√
2κ−

√
2κc+

)
e− i (ωpu+δ)t

−
√

2κc− e− i (ωpu−δ)t, (14)
where cout(t) is the output field operator in the original
frame. The output fields contain two input components
(the driven field ωpu and the probe field ωpr) and one
generated FWM component at the frequency 2ωpu − ωpr

in Eq. (14). The transmission of the probe field is
defined as

tp =
Epr/

√
2κ−

√
2κc+

Epr/
√

2κ
=

1− 2κ [(κ− iδ)− i(∆c − C1 − C2)]

(κ− iδ)2 + (∆c − C1 − C2)2 −D
. (15)

The relative transmitted intensity of the four wave
mixing defined as the ratio of the output and input field
amplitudes at the frequency is then given by

|Tout−|2 =

∣∣∣∣∣ c−

Epr/
√

2κ

∣∣∣∣∣
2

=

∣∣∣∣∣ 2κ(A1B
∗
1ω

′

m +A2B
∗
2ωmE

2
pu)

[(κ+ iδ)2 + (∆c − C∗1 − C∗2 )2 − (D∗)2]F 2

∣∣∣∣∣
2

. (16)

3. Results and discussion

In this section, we first discuss the optical bistable be-
havior of the steady-state photon number ω0 of the cav-
ity field, phonon number |X0|2 of the collective oscillation
of the BEC, and the phonon number |q0|2 of the mechan-
ical resonator according to Eq. (12). Furthermore, we in-
vestigate the four wave mixing based on the numerical so-
lutions of Eq. (15) and (16). Finally, we also demonstrate
the four wave mixing intensity affected by the pump
strength, the frequency difference between the BEC and
the moving end mirror, cavity decay rate, and effective
coupling strength of the optical field with the moving
mirror.

In order to better understand the optical bistable
behavior and tunable four-wave mixing based on hy-
brid BEC-optomechanical systems, we choose the real-
istic parameters of the hybrid optomechanical systems
as follows [27, 28]. We consider N = 2.3 × 104 atoms
of 87Rb, trapped inside Fabry–Pérot cavity with length
L = 1.25 × 10−4 m, driven by the single mode external
field with wavelength λp = 780 nm. The intra-cavity op-
tical mode has decay rate κ = 2π × 1.3 kHz. Further,
intra-cavity field produces recoil of ωrec = 2π × 3.8 kHz
in atomic mode trapped inside cavity with damping rate
γ = 0.001κ. The moving end mirror of cavity is con-
sidered as a perfect reflector oscillating with frequency

ωm = 1.1ω
′

m with damping γm = 0.001κ. In the fol-
lowing conditions the optical cavity is driven by a red
detuned laser field, and in the resolved sideband condi-
tion, ωm � κ, which ensures the normal mode splitting
to be distinguished.

We first discuss the optical bistable behavior of the hy-
brid optomechanical systems. In Fig. 2, we have plot-
ted the mean number of photons ω0 as the cavity pump
detuning ∆c for four different values of the interac-
tion of mirror-cavity: G=0 (Fig. 2a), G=g (Fig. 2b),
G=2g (Fig. 2c), and G=3g (Fig. 2d), respectively. In or-
der to see the effect of the pump strength on the opti-
cal bistability of the system, we have plotted the mean
photon number of the system in three different pump
strengths: Epu = 0.1 kHz (the black dot line),
Epu = 0.3 kHz (the blue dot line), and Epu=0.4 kHz
(the red dot line). In Fig. 2a, the max power of the laser
pump is Epu = 0.4 kHz, which is far below the bista-
bility threshold of the system. As is seen, all curves
have the same form in the absence of the interac-
tion of mirror cavity, and there is no bistable phe-
nomenon. Increasing the interaction of mirror-cavity
cause the system to approach the bistability region.
In Figure 2b, where the power of the laser pump is
the same as Fig. 2a, which is below the bistability thresh-
old of the system, so the curves are the same as Fig. 2a.
In contrast, in Fig. 2c and d, their bistability regions be-
come clear with increase in the interaction of mirror-
cavity. In short, on one hand the interaction of mirror-
cavity of the hybrid optomechanical cavity causes
the system to become bistable at lower pump powers.
On the other hand, the optical bistability becomes larger
and the bistable regime becomes wider with increase
in the pump powers and with increase in the interaction
of mirror-cavity.

Furthermore, we can see from the Eq. (12), that
the phonon number |X0|2 of the collective oscillation
of the BEC and the phonon number |q0|2 of the me-
chanical resonator are related to the steady-state pho-
ton number ω0 of the cavity field. Figure 3 shows
the steady state phonon number |X0|2 of the collec-
tive oscillation of the BEC and the steady-state phonon
number |q0|2 of the mechanical resonator as a function
of cavity-pump detuning ∆c for three different values
of pump strengths Epu=0.1 kHz (the black dot line),
Epu = 0.3 kHz (the blue dot line), and Epu = 0.4 kHz
(the red dot line) with the interaction of mirror-cavity
G = 2g. For the fixed interaction of mirror-cavity, the op-
tical bistable behavior of the steady-state phonon num-
ber |X0|2 and the phonon number |q0|2 can also occur
with function of cavity-pump detuning ∆c, which is sim-
ilar to the curve for G = 2g in Fig. 2(c). Furthermore,
the two curves for the phonon number |X0|2 and |q0|2
in Fig. 3a and b coincide. The reason can be explained
by Eq. (12). Phonon number |X0|2 of the collective oscil-
lation of the BEC and the phonon number |q0|2 of the me-
chanical resonator depends on the steady-state photon
number ω0 of the cavity field.
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Fig. 2. The mean photon number ω0 of the intracavity as a function of cavity-pump detuning ∆c for three different val-
ues of pump strengths Epu = 0.1 kHz (the black dot line), Epu = 0.3 kHz (the blue dot line) and Epu = 0.4 kHz (the red
dot line), calculated for four different values of the interaction of mirror-cavity: (a) G=0, (b) G=g, (c) G=2g and
(d) G=3g, respectively. The other parameters are g0 = 2π × 10.9 MHz, N = 2.3 × 104, ωm = 2π × 15.2 kHz,
ω

′
m = 1.1ωm, ∆a = 2π × 32 GHz, κ = 2π × 1.3 kHz and γ = γm = 0.001κ.

In Fig. 4, we plot the probe transmission |tp|2 and
the FWM intensity as a function of the normalized fre-
quency δ/ω̄ with G = 0 and G = g. In the absence
of the effective coupling strength of the optical field with
the mirror, i.e., G = 0, it can be seen from Fig. 4a
that OMIT appears in the center of the normalized
frequency δ/ω̄, which can be well explained in terms
of the radiation pressure force oscillating at the beat
frequency ∆c = ω̄ between the probe and control field.
Furthermore, we find that FWM peak can be greatly en-
hanced under the condition of OMIT, as shown in Fig. 4b.
There is a peak at the δ/ω̄ = 1 in the FWM spectrum.
When the effective coupling strength of the optical field
with the mirror turns on (G = g), the transparency
window at the δ/ω̄ = 1 is split into two transparency
windows, which yields the double-OMIT. Correspond-
ingly, two peaks appear in Fig. 4(b) at the positions
of the two transparency windows, respectively. The sys-
tem is pumped by the lower pump laser field. The col-
lective motion of the BEC can be performed as an anal-
ogy to a mechanical resonator, and the moved mirror

as a mechanical resonator. The physical effect can be
explained by OMIT, which originates from the radiation
pressure coupling an optical mode to a mechanical mode.
The OMIT depends on quantum interference. The cou-
pling between the optical field with the condensate mode
and the mirror breaks down the symmetry of the OMIT
interference. Then, the single OMIT window is split into
two transparency windows.

To determine the strength of pump laser affected
on the FWM intensity, we plot the FWM intensity
as function of the normalized frequency δ/ω̄ for dif-
ferent values of pump strength Epu. They are indi-
cated with color lines in Fig. 5, where Epu = 0.05 kHz
(black), Epu=0.1 kHz (blue), and Epu=0.3 kHz (red).
It can be seen that the peak FWM intensity first in-
creases quickly and reaches a maximum value with in-
crease in the strength of the pump laser. Furthermore,
we also find that the distance of the window becomes
larger as the pump strength increases. The physical rea-
son for this result is related to the nonlinearity of the hy-
brid optomechanical system. When the pump strength
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Fig. 3. (a) the steady state phonon number |X0|2 of the collective oscillation of the BEC and (b) the steady-state
phonon number |q0|2 of the mechanical resonator as a function of cavity-pump detuning ∆c with the interaction
of mirror-cavity G = 2g for three different values of pump strengths Epu=0.1 kHz (the black dot line), Epu = 0.3 kHz
(the blue dot line), and Epu=0.4 kHz (the red dot line). The other parameters are the same as those of Fig. 2.

Fig. 4. (a) The probe transmission spectum and (b) FWM intensity |Tout−|2 as a function of δ/ω̄, with ∆c = ω̄ for
G = 1g (the blue line) and G = 0 (the brown line). The other parameters are the same as those of Fig. 2.

is relatively small, more intracavity photons are stimu-
lated when pump strength increases and thus the effective
coupling strength between the cavity and the mechanical
resonator gets stronger. The probe field and the control
field can therefore mix efficiently via the effective cou-
pling of the optical field with the condensate mode and
the effective coupling of the optical field with the moved
mirror.

Furthermore, we investigate the effect of frequency dif-
ference between the BEC and the moving end mirror
on FWM intensity |Tout−|2. The resulting spectra are
shown in Fig. 6. One can find there is only one peak
when the frequencies of BEC and the movable mirror are
same, i.e. ωm = ω

′

m. In the case of ωm 6= ω
′

m, FWM in-
tensity |Tout−|2 exhibits other two peaks at ω = ω̄ + ω0

and ω = ω̄−ω0. The small deviation ω0 from the central
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Fig. 5. FWM intensity |Tout−|2 as a function of δ/ω̄m,
with ∆c = ω̄ for Epu = 0.05 kHz (the black line), Epu =
0.1 kHz (the blue line) and Epu = 0.3kHz (the red line).
The other parameters are the same as those of Fig. 2.

Fig. 6. FWM intensity |Tout−|2 as a function of δ/ω̄,
with ∆c = ω̄ for ωm = 0.8ω

′
m, ωm = 0.9ω

′
m, ωm = ω

′
m,

ωm = 1.1ω
′
m, and ωm = 1.2ω

′
m. The other parameters

are the same as those of Fig. 2.

frequency ω̄ depends on the frequency difference between
the BEC and the moving end mirror. If ω

′

m < ωm, two
normal peaks are further and further apart with the in-
crease of the frequency difference between the BEC and
the moving mirror. If ω

′

m > ωm, two normal peaks are
further and further apart with the decrease of the fre-
quency difference between the BEC and the moving
mirror.

Now, we are going to study the influence of the cavity
decay rate κ on the FWM intensity |Tout−|2. We analyze
it in Fig. 7 for different values of cavity decay, namely
κ = 1.3π kHz (the black line), κ = 2π×1.3 kHz (the blue
line), and κ = 4π× 1.3 kHz (the red line). It can be seen
that the peak FWM intensity first increases with increase
in the cavity decay rate κ, while the positions of the peaks
of these curves remain unchanged.

Finally, in Fig. 8, we plot the FWM intensity |Tout−|2
as function of the normalized frequency δ/ω̄ for dif-
ferent effective coupling strengths of the optical field
with the moving mirror for G = 0 (the black line),
G = g (the blue line), G = 2g (the green line), and
G = 3g (the red line). In the absence of effective
coupling strength of the optical field with the moving

mirror, the strength of the four wave mixing has only
one peak. While in the presence of effective coupling
strength of the optical field with the moving mirror,
there are two peaks in the FWM intensity |Tout−|2. Fur-
thermore, the line widths of the peaks increase with in-
crease in the effective coupling strength of the optical
field with the moving mirror.

Fig. 7. FWM intensity |Tout−|2 as a function of δ/ω̄
for κ = 1.3π kHz (the black line), κ = 2π × 1.3 kHz
(the blue line) and κ = 4π × 1.3 kHz (the red line).
The other parameters are the same as those of Fig. 2.

Fig. 8. FWM intensity |Tout−|2 as a function of δ/ω̄ for
G = 0 (the bleak line), G = g (the blue line), G = 2g
(the green line) and G = 3g (the red line). The other
parameters are the same as those of Fig. 2.

4. Added noises of the FWM

To deal with Eq. (4), we use the Fourier trans-
form: f(t) = 1

2π

∫∞
−∞ f(ω)e− iωtdω, and f†(t) =

1
2π

∫∞
−∞ f†(−ω)e− iωtdω that is valid for any operator

f(t) ∈ {δc, δX, δp, δq}. Here, δX is treated as X̂ =

(â+ â†)/
√

2.
Now, Eq. (4) can be rewritten as
− iωδc(ω) = −(i∆ + κ)δc(ω)− igc0δX(ω)

+iGc0δq(ω) +
√

2κcin(ω),

− iωδX(ω) = ω
′

mδY (ω)− γδX(ω),
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− iωδY (ω) = −ω
′

mδX(ω)− γδY (ω)

−g
(
c0δc

†(−ω) + c0
∗δc(ω)

)
+ fm(ω),

− iωδp(ω) = −ωmδq(ω)− γmδY (ω)

+G
(
c0δc

†(−ω) + c0
∗δc(ω)

)
+ ξ(ω),

− iωδq(ω) = ωmδp(ω), (17)
The operators cin(ω), fm(ω), and ξ(ω) denote the corre-
sponding noises zero average value. These noise opera-
tors satisfy the following correlation function [18]:
〈cin(ω)cin(−ω)〉 = 1,

〈fm(ω)fm(−ω)〉 = γsm,

〈ξ(ω)ξ(−ω)〉 =
γm
ω

[
1 + coth

(
~ω

2kBT

)]
. (18)

Above equations, further, give the following solution:
δc(ω) = E(ω)cin(ω) + F (ω)c†in(−ω)

+V1fm(ω) + V2ξ(ω), (19)
in which

E(ω) =
√

2κ
i(λ1 + λ2) + (κ− i∆− iω)

d(ω)
,

F (ω) =
√

2κ
i(λ1 + λ2)

d(ω)
,

V1 =
− igc0(κ− i∆− iω)(γ − iω + ω

′

m)

d(ω)
(
ω′
m

2
+ (γ − iω)2

) ,

V2 =
iGωm(κ− i∆− iω)

d(ω) (ω2
m − ω2 − iγmω)

, (20)

with

λ1 =
η2(ω

′

m)

(ω′
m)

2
+ (γ − iω)2

, λ2 =
ζ2ωm

ωm2 − ω2 − iγmω
,

d(ω) = (κ− iω)2 + ∆2 − 2∆(λ1 + λ2), (21)
where η = g|c0|, ζ = G|c0| are the effective cou-
pling of the optical field with the condensate mode and
the moving-end mirror. Then, using the input-output
relation cout(ω) =

√
2κc(ω)− cin(ω), defining the spec-

trum of the field via 〈δc†(−Ω)δc(ω)〉 = 2πSc(ω)δ(ω+ Ω),
〈δc(−Ω)δc†(ω)〉 = 2π(Sc(ω)+1)δ(ω+Ω). We can obtain
the spectrum of the output fields

Scout(ω) = R(ω)Scin + Sv(ω) + S1(ω) + S2(ω),

Sdout(ω)=T (ω)Scin + Sv(ω) + S1(ω) + S2(ω), (22)
where

R(ω) = |
√

2κE(ω)− 1|2, T (ω) = |
√

2κE(ω)|2,

Sv(ω) = 2|
√

2κF (ω)|2, ST1 (ω) = γ|V1(ω)|2,

ST2 (ω) =
γm
ω

[
1 + coth

(
~ω

2kBT

)]
|V2(ω)|2. (23)

Fig. 9. (a) The vacuum noise spectrum Sv(ω).
(b) the thermal noise spectrum ST

1 (ω) and (c) ST
2 (ω)

as function of the normalized frequency ω/ω̄ for the ef-
fective coupling of the optical field with the condensate
mode η = 2π kHz, (black curve), and η = 4π kHz (red
curve). The other parameters are: ωm = 2π×15.2 kHz,
ω

′
m = 1.1ωm, ∆ = (ωm + ω

′
m)/2, ζ = 2π kHz and

γsm = γm = 0.001κ.

In Eq. (22), R(ω) and T (ω) are the contribu-
tions arising from the presence of the input field.
Sv(ω) is contribution of the nature of the vacuum field.
ST1 (ω) and ST2 (ω) are the contributions from the fluctu-
ations of the effective mechanical oscillator mode.

Finally, we discuss the effects of the vacuum noise spec-
trum Sv(ω) and the thermal noise spectrum ST1 (ω) and
ST2 (ω) as functions of the normalized frequency ω/ω̄ for
the effective coupling of the optical field with the con-
densate mode η = 2π kHz (black curve), and η = 4π kHz
(red curve) are shown in Fig. 9. We can see the behavior
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of the vacuum noise Sv(ω) for two different values
of the effective coupling of the optical field with the con-
densate mode. The maximum contribution of the noises
is about 0.35%, which is insignificant. For the thermal
noise ST1 (ω) and ST2 (ω) for two different values of the ef-
fective coupling of the optical field with the condensate
mode are shown in Figs. 9b and c. One can find that
for larger pumping field powers, ST1 (ω) split into two sep-
arate peaks. The maximum contribution of the thermal
noise is about 0.3%, which is insignificant too. How-
ever, if we work with mirror temperatures like 20 mK,
then the thermal noise term is insignificant as shown
in Fig. 9 [18, 33].

5. Conclusion

We have investigated the optical bistability and four-
wave mixing in a hybrid optomechanical systems consist-
ing of a Bose-Einstein condensate trapped inside an op-
tical cavity with a moving end-mirror. Numerical re-
sults show that the optical bistability can be adjusted
by the control pump strengths and effective coupling
strength of the optical field with the moving mirror.
Moreover, the output fields of the cavity are signifi-
cantly modified by effective coupling strength of the op-
tical field with the condensate mode and effective cou-
pling strength of the optical field with the moving mir-
ror. Two transparency windows exist in the transmis-
sion spectrum of the probe field, which can further en-
hance the intensity of the four-wave mixing field with
reduced linear absorption. The splitting distance be-
tween the two peaks in the FWM spectrum can be con-
trolled by the frequency difference between the BEC and
the moving end mirror. Furthermore, the relationship be-
tween the peak value of the FWM intensity can be con-
trolled effectively by the pump strength, the frequency
difference between the BEC and the moving end mir-
ror, cavity decay rate, and effective coupling strength
of the optical field with the moving mirror. Finally,
we also demonstrate the vacuum and thermal noise can
be insignificant for the FWM spectrum.
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Rev. A 87, 013824 (2013).

[21] J.Q. Zhang, Y. Li, M. Feng, Y. Xu, Phys. Rev. A
86, 053806 (2012).

[22] K.A. Yasir, W.M. Liu, Sci. Rep. 5, 10612 (2015).
[23] K.A. Yasir, W.M. Liu, Sci. Rep. 6, 22651 (2016).
[24] Y. Li, M. Xiao, Opt. Lett. 21, 1064 (1996).
[25] H. Schmidt, K.L. Campman, A.C. Gossard,
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