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The light pulses propagation in optical fibers modeled by the dispersive cubic-quintic Schrédinger equation
including high-order time derivatives is investigated in detail. For this purpose, the exp,-function scheme is utilized
along with a symbolic computation system to gain the exact solutions of the model. As an outcome, a wide range
of exact solutions including dark and periodic solitary wave solutions are effectively derived, verifying the excellent

performance of the scheme.
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1. Introduction

The countless applications of nonlinear evolution equa-
tions (NLEEs) in diverse scientific fields have attracted
the attention of many academic scholars to search and
analyze their exact solutions. In this respect, various
methods such as the Kudryashov method [1-7], tanh-coth
method [8, 9], modified simple equation method [10, 11],
sine-cosine method [12, 13], transformed rational func-
tion method [14, 15|, ansatz method [16, 17], auxil-
iary equation method [18, 19|, semi-inverse variational
method [20, 21|, and exp,-function method [22-24] have
been utilized to solve and handle the NLEEs.

The exp,-function scheme is one of the most practical
techniques to acquire the exact solutions of NLEEs and is
widely exerted to retrieve the exact solutions of NLEEs;
for example, the combined KdV-mKdV equation [22],
the unstable nonlinear Schrodinger equation [23], and the
Tzitzéica-type equations [24].

In the present paper, the dispersive cubic-quintic
Schrodinger equation (DCQSE) including higher-order
time derivatives is studied through the exp,-function

scheme. The nonlinear governing model in its dimen-
sionless form is presented as below [25-27]:
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which describes the light pulses propagation in optical
fibers. In the nonlinear model (1), z is the normalized
propagation distance, t is the retarded time, wu(z,t) is
the slowly varying envelope of the electric field, a; is
the second-order dispersion related to the group veloc-
ity dispersion, as is the third-order dispersion, a3 is the
fourth-order dispersion, and finally 81 and B are the co-
efficients of cubic-quintic terms.

Some recent research works related to the model (1)
are listed here. Dai et al. [25] employed the generalized
projected Riccati expansion method to acquire a wide
range of new exact solutions to the model (1). The soli-
tary wave solutions of the model (1) were also gained by
Azzouzzi and her colleagues [26] by means of the complex
envelope function approach. Xie and his co-workers [27]
obtained distinct exact solutions of the model (1) using
the complete discrimination system technique.

The organization of this paper is as follows: in Sect. 2,
the description of the exp,-function scheme is given. In
Sect. 3, the exp,-function scheme is applied to procure
the exact solutions of the DCQSE including high-order
time derivatives. In Sect. 4, the physical properties of ex-
act solutions are presented. The last section summarizes
the results of the current study.

2. exp, function scheme

Suppose an NLEE can be presented as

) =0. (2)
The above Eq. (2) can be converted to the following non-
linear ordinary differential equation:

O((p,(pl,cp//,...) =0, (3)
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with the assumption
u(zt)=p () e, &=kz—cd,
Let us surmise a non-trivial solution for Eq. (3) in the
form below
ap +aja +---+aya
= 4
(&) bo + b1aé + -+ byalNe’ )
where a; (0 <i < N) and b; (0 <4 < N) are found later
and N is a natural number.
By replacing Eq. (4) in Eq. (3), we get
F(a®) =lo+lia* + -+ +1-a™ = 0. (5)
Through setting I; (0 < i < 7) in (5) to zero, we procure
a set of nonlinear equations as follows:
=0, i=0,...,1. (6)
Ultimately, by solving the yielded system (6), the non-
trivial solutions of NLEE (2) are gained.

0 = pz — wt.

N¢

3. Nonlinear governing model
and its exact solutions

In this section,
formation:

u(zt) =@ (€) e,

by utilizing the following trans-

E=kz—ct, 0=puz—wt,

(In(a))? Awagazbiby — (In (a))? Awayazby — (In (a))? Aapazbiby + (In (a))? Aajagby — cwdapazbiby + cwdaiasbd

in which ¢ and 6 respectively point out the amplitude
component and the phase component of u, substituting
it into Eq. (1), and recognizing the real and imaginary
parts, the model (1) is decomposed into the following
higher-order ordinary differential equations:

"

4¢3 (a3w — an)

+ (—24k + 24aqwe + 12a0w2c — dazw®c) ¢ =0, (7)

a304<p(4) + (1204102 + 12a2w02 — 6a3w202) 90”
+ (24u — 120qw? — daw?® + a3w4) ©

—241p — 24,0° = 0. (8)

3.1. Scheme and its results

Through selecting N = 1, the non-trivial solution (4)

becomes
ag + ala5
=— 1.

PO =3 e 7
Setting the above non-trivial solution in the higher-order
Egs. (7) and (8) and equating the factor of each power
of a¢ in the resulting equations to zero, a nonlinear set is
gained as

3

+3cw2a0a2b(2)bl — 3cw2a1a2bg + Gcwaoalbgbl — GCwalalbg — Gkaobgbl + Gkalbg =0,

—4(In(a))” Pwagasbeb? + 4 (In (a))? Cwayasbby + 4 (In(a))? agazbob? — 4 (In (a))? ayazbdby — 2cwagasbob?
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+30w2aoazb? — 30w2a1agbob% + Gcwaoalb? — GCwalalbob% — 6ka0bi’ + 6ka1b0b% =0,

whagazby — dwagaaby — 12wagan by + 24pagby — 24ad By — 24ajbafy = 0,

— (In(a))"* ¢*apasbiby + (In(a))* c*arasbh + 6 (In (a))? Gwapasbib, — 6 (In (a))? Fw?aiasbl
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—11 (In (a))* *agasbob? + 11 (In (a))* c*a1asbZb? — 6 (In (a))® Cw?agasbob? + 6 (In (a))? w?ar asbib?
+12 (In (a))? Cwagaszbob? — 12 (In (a))® Cwayazb?b? + 12 (In (a))? Pagaibob? — 12 (In (a))® Payaibib?
+4w4a0a3b0b? + 6(4]40410[3[)%[7% - 16w3a0a2b0b§’ - 24w3a1a2b(2)b% — 48w2a00¢1b0bi’ — 72w2a1a1b%b% + 96/¢aob0b?
+144pa1b3b; — 240adalfs — T2ada1biB1 — 14dagaiboby B1 — 24a3b3 61 = 0,

(In (a))* fagasb? — (In (a))* tayasbob? — 6 (In (a))? Pw?agasb? + 6 (In (a))® Pwaiasbob? + 12 (In (a))? Cwagasb?
—12 (In (a))? wayazbob? + 12 (In (a))® Pagaib? — 12 (In (a))? Garaibob? + wagasb? + 4wt arasbeb?
—élzcu?’ao(lgbil — 16w3a1a2b0b‘;’ — 12&12(10&11)‘1l — 48w2a1a1b0b‘;’ + 24@(101)‘11 + 96,ua1b0bi’ — 120a0a‘11ﬂ2

—T2a0a’biBi — 48a3bobi B = 0,

(,u4alongi1 — 4(,u3a1042b‘1L — 12(,02(110416‘11 + 24ua1b% — 24a‘;’ﬂ2 — 24a?bf[31 =0,

(

whose solution yields the following exact solutions: in which

Case 1 V300
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Q2
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3
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a9

w=—
%]

o= \/404%6@52 + 40na2a2Bs + adasfs 4. Numerical simulations and physical properties

In this section, numerical simulations are presented to
Case 2 illustrate the physical properties of the obtained solu-
ag + ajak =t i (pe—wt) tions. For instance, the solutions u (2,t) and us (z,t)

usa (2,1) = by + biakz—ct have been considered, respectively, in Figs. 1 and 2
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Fig. 1.
plot.

Fig. 2.
plot, (b) density plot.

for some opted parameters. Figure 1 shows a dark soli-
tary wave solution, whereas Fig. 2 evinces a periodic soli-
tary wave solution. In the normal dispersion region, soli-
tons are transmitted as dark ones, and conversely, in the
anomalous dispersion region, solitons are transmitted as
bright ones [28]. Dark solitons are chirped, viz., the phase
of a dark soliton varies across its width, whereas bright
solitons have a constant phase [29]. Moreover, the ve-
locity of a dark soliton relates to its amplitude through
the internal phase angle [29]. Both dark and bright soli-
tons in a single equation model result from the self phase
modulation.

5. Conclusion

The light pulse propagation in optical fibers was stud-
ied in the present paper. In this regard, the nonlin-
ear governing model which is known as the dispersive
cubic-quintic nonlinear Schrédinger equation including

(b)

16
14
12
10
t 8

4= O

(3]

The solution w1 (z,t) when bp = b1 =1 =a2 =ag3 =1, f1 = —2, 2 =1, and a = 2: (a) 3D plot, (b) density

(b)
16
14
12
10

The solution us (z,t) when bp =1, b1 =2, a1 = 1.1, a2 = 0.7, a3 = 1.5, f1 = 1.9, B2 = 1, and a = 2: (a) 3D

high-order time derivatives was solved successfully. The
exp,-function scheme along with a symbolic computation
system was formally employed to extract the exact solu-
tions of the model. As an upshot, a wide range of exact
solutions including dark and periodic solitary wave solu-
tions were derived, proving the excellent performance of
the scheme.
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