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1. Liquid crystals as optical media

Liquid crystals are birefringent liquids in which refrac-
tive index depends on orientation of electric vector of
light wave with respect to optical axis of ordered liq-
uid. Such anisotropy distinguishes them from liquids
where birefringence can be enforced only by external
fields [1, 2].

When a thin film of planar-oriented liquid crystal con-
fined between two parallel plane glass plates is placed be-
tween crossed polarisers, initially dark view field becomes
brighter. The brightness is maximal when the angles be-
tween direction of nematic molecules and polariser trans-
mission axes are half-right and minimal when they are
zero and right. For a nematic of homeotropic orientation
the view field remains dark irrespective of rotations of
the plate. A plane-parallel layer of liquid crystal features
optical properties like a plate cut of uniaxial crystal. The
optical axis is always parallel to director of nematic [1].
Refractive index for a polarised light-beam with electric
vector parallel to optical axis is called index of refraction
of extraordinary rays or simply extraordinary refractive
index (ne) and similarly, for a beam with electric vector
perpendicular to optical axis, is called index of refraction
of ordinary rays or ordinary refractive index (no) [3, 4].

2. Experimental methods
for determining refractive indices
and birefringence of liquid crystals

Since a sample of ordered nematic liquid crystal
or smectic liquid crystal features optical properties of
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an uniaxial solid crystal, the same methods can be ap-
plied for determining refractive indices ne , no , ni (for
isotropic state at higher temperature) and birefringence
∆n ≡ ne − no (as described in e.g. [5–7]). All these
methods can be divided into two classes: (1) goniometric
(or spectrometric), including (1a) refractometric or (1b)
prismatic and (2) interferometric ones.

2.1. (1a) Refractometric methods

Refractometric methods involve measurements of crit-
ical angle of refraction (or minimal angle of total inter-
nal reflection) [8] using Abbe’s or Pulfrich’s refractome-
ter being in fact specific goniometers with short mea-
suring bars. The idea of refractometric measurements is
presented in Fig. 1.

Fig. 1. Transmission of light from a less dense medium
1 to a more dense medium 2 or from 2 to 1 through a
plane boundary: n1, n2 — refractive indices, v1, v2 —
light speeds, ρ1, ρ2 — specific masses, βcr — critical
angle of refraction or total internal reflection; n1v1 =
n2v2 = c — light speed in vacuum.

(196)
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The measurements can be performed in transmitted
light when rays pass from less dense medium 1 to more
dense medium 2 or in reflected light when rays pass from
2 to 1. In the first variant the largest possible angle
of refraction βcr is determined when rays begin to slide
along the limit boundary while in the second variant the
smallest possible angle of total internal reflection βcr is
determined when rays begin to return from the boundary.
Usually Abbe’s cube is made of two rectangular prisms
admitting mutual rotations. An investigated specimen
is placed as thin layer between specially prepared prism
walls [8, 9]. Then the cube is put into goniometer which
constitutes Abbe’s refractometer [10, 11]. Dorn [12] and
Pelzl and Sackmann [13] applied Abbe’s cube for the first
time to measure refractive indices of liquid crystals. In
Abbe’s cube a liquid crystal is oriented homogeneously
— with optical axis parallel to surface of refraction of
prisms and perpendicular to plane of incidence of light
(a sample with homeotropic order can also be used).
This method is useful but with significant constraints.
A measured refractive index is bounded by the refrac-
tive index of material the prisms are made of. A stan-
dard bound is 1.7 while for nematic liquid crystals often
ne > 1.7. The production of prisms with refractive index
larger than 1.7 (up to 1.87) is possible but such special
glasses with n > 1.7 are soft, weak, expensive, and dif-
ficult to be managed. Absolute inaccuracy in determin-
ing ne and no is around ±(0.05 ÷ 1.0) × 10−3 and even
worse frequently since especially for multi-compound liq-
uid crystals the limit line in the image is blurred. The
texture of studied nematic layer is not visible. Many
authors [10, 14–25] applied this method for determin-
ing ne , no , ni. Abbe’s refractometer can be replaced
by Pulfrich’s refractometer based on similar concept. A
sample of liquid crystal can be too a plane-parallel layer
with homogeneous (planar) or homemotropic order but
only transmission mode in monochromatic light can be
exploited.

2.2. (1b) Prismatic methods

Prismatic methods involve observation of deviation of
rays passing through a prism filled with sample of ordered
liquid crystal (Fig. 2).

A prismatic sample of nematic liquid crystal is placed
in goniometer or refractometer with edge walls parallel
to rotation axis of lens. An image is observed through
lens and the smallest angle of deviation for rays pass-
ing through prism perpendicular to optical axis is mea-
sured [26, 5, 7]. Two such images are found, since the
sample is birefringent [5], for ordinary and for extraor-
dinary rays and serve to computing refractive indices.
Usually incident rays passing perpendicularly through
one of wedge sample walls are used. Chatelain mea-
sured ne and no of PAA [27, 28] for the first time us-
ing this method (with apex angle of 9◦ and ray devi-
ation between 5◦ and 8◦), therefore it is often called
method of Chatelain’s wedge [29]. Afterward many simi-
lar measurements were realised (Brunet-Germain, Pellet,

Fig. 2. Scheme of rays passing through a wedge-like
homogeneous sample of liquid crystal. The optical axis
is parallel to refractive surfaces of prism and perpendic-
ular to plane of incidence (i.e. plane of diagram).

Chatelain [30–33]). Absolute inaccuracy in determin-
ing ne and no is around ±(1 ÷ 5) × 10−3. The ad-
vantages of this method are absence of bound for mea-
sured refractive index [34–39] and easiness of determin-
ing dispersive characteristics. The disadvantages are
difficulty in thermal stabilisation of the prism and in-
visibility of texture of nematic liquid crystal during
measurements.

2.3. (2) Interferometric methods

Interferometric methods are based on interference of
linearly polarised light travelling through birefringent
medium and exploiting linear or circular polariscope [40–
42] as sketched in Fig. 3.

Fig. 3. Scheme of a polariscope: P — polariser, S
— birefringent sample, A — analyser, ∆n — birefrin-
gence, d — thickness of sample, λ — wavelength of
monochromatic light, k — natural number, T — sam-
ple temperature [41–43]. The intensity of light passing
through a polariscope is recorded by a photodetector,
I = f(d,∆n, λ, T, k); minima of intensity correspond to
differences of optical paths d∆n = kλ.

The transmission of a linear polariscope follows
formula [43–46]:

I = 2I0τ
2

(
cos2(ϑP − ϑA)

− sin(2ϑP ) sin(2ϑA) sin2 πd∆n

λ

)
, (1)
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where λ, I0 are wavelength and intensity of non-polarised
monochromatic light incident on a polariscope, respec-
tively, τ = 1

2 is amplitude transmittance of an ideal
polariser or analyser, I is intensity of light leaving po-
lariscope, ϑP = ∠(n,wP ), ϑA = ∠(n,wA) are angles
between axes of transmission of polariser and analyser
(angles ϑP , ϑA, ϑ are measured in plane of principal sec-
tion of liquid crystal cell or birefringent plate cut from
uniaxial solid crystal), wP is vector of the transmission
axis of a polariser, wA is vector of the transmission axis
of an analyser, n is director of a nematic liquid crystal
in a planar cell placed in linear polariscope, ∆n is bire-
fringence, and d is thickness of sample.

The interference with maximal birefringent contrast
appears in two cases [45]:

(i) when ϑP = ϑA = 45◦, wA||wP and (1) reduces to

I = 2I0τ
2 cos2

πd∆n

λ
= Imax cos2

πd∆n

λ
, (2)

where Imax = 2I0τ
2 is maximal intensity of light trans-

mitted through mutually parallel polariser and analyser
in empty polariscope;

(ii) when ϑP = +45◦, ϑA = −45◦ or ϑP = −45◦,
ϑA = +45◦, wA⊥wP and (1) reduces to

I = 2I0τ
2 sin2 πd∆n

λ
= Imax sin2 πd∆n

λ
(3)

and light passes through mutually perpendicular po-
lariser and analyser. Minima of transmission appear for

d∆n = kλ. (4)
This variant is especially useful in laboratory measure-
ments.

In all interferometric methods parallel linearly po-
larised light beam passes through birefringent sample.
The interference image observed on leaving analyser de-
pend on: shape of sample (being plane-parallel or wedge-
like), spectral composition of incident light, angle be-
tween plane of polarisation of incident light and optical
axis of sample, and angle between planes of polarisations
of polariser and analyser. As it follows from formula (1)
I = f(d, λ, T ) when ϑP , ϑA, ∆n are fixed. The inten-
sity of transmitted light can be measured in the polar-
iscope as a function of each of these three experimental
parameters.

(a) I = f1(T ) with d, λ fixed and continuous quasi-
static change of temperature. Such measurements can
be called variable temperature interferometry (VTI).

(b) I = f2(λ) with d, T fixed. The liquid crystal cell
must be plane-parallel being in fact a Fabry–Perot inter-
ferometer. The interference field is homogeneous for nor-
mally incident parallel light beam. Such measurements
can be called variable wavelength interferometry (VWI).

(c) I = f3(d) with T , λ fixed and continuous change
of cell thickness. The liquid crystal cell is wedge-like,
with plane confining covers forming a wedge. Such mea-
surements can be called variable thickness interferometry
(VThI). The interference field is not homogeneous and is
visible in transmitted light as a system of narrow bright
fringes alternating with broad dark ones parallel to wedge

apex border or in reflected light as a system of narrow
dark fringes alternating with broad bright ones parallel to
wedge apex border (as illustrated in Fig. 4). If the two-
wave approximation is acceptable (as for small reflection
coefficient — see Appendix), the Fizeau fringes [47] of
the same width are observed as dependent of local dif-
ference of optical path — bright ones for d∆n = kλ and
dark ones for d∆n = 1

2 (2k − 1)λ, k = 1, 2, 3, . . . [48].
In the literature several methods for determining no, ne,
∆n are proposed. These ones which were applied for real
materials are briefly described below, identified with the
names of first authors.

Fig. 4. Interference fringes from an empty wedge cell
recorded in reflection (epi) mode (top) and transmission
(dia) mode (bottom) when reflectance is around 0.80
(finesse around 80).

Method 1 (Balzarini [49]; VTI). The relative change
of ∆n as a function of temperature is derived from mea-
sured I = f1(T ). At least one independent value of ∆n
must be determined by another method to find whole
characteristic of ∆n(T ).

Method 2 (Chang [50–53]; VWI). Wavelengths of inci-
dent light are changed. If a local minimum of intensity
is observed for some d∆n(λ1) = kλ1, then by diminish-
ing λ one finds next minimum for d∆n(λ2) = (k + 1)λ2.
In this way relative changes of ∆n with λ can be de-
rived from measured I = f2(λ), but at least one inde-
pendent measurement of ∆n together with correspond-
ing λ is needed for determining whole characteristic of
∆n(λ). If d∆n ≤ 0.4 µm, first interference fringe is ob-
served in visible light and can be easily identified, but if
d∆n ≥ 0.6 µm, it appears in infrared and is difficult to
be identified [54].
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Method 3 (Haller [55–57]; VThI). A wedge liquid crys-
tal cell with apex angle around 1◦÷ 2◦ is used. Absolute
value of ∆n can be determined in transmission mode with
possible observation of texture.

Method 4 (Kuczyński et al. [58, 59]; VWI). Plane-
parallel cell with homogeneously aligned liquid crystal
is used to determine ∆n from interference observation in
transmission mode.

Method 5 exploiting Newton’s rings (VThI): (a) in
the transmission mode ∆n is determined (Kuczyński et
al. [60–62]); (b) in the reflection mode no and ne are
determined (Chatelain [63]).

Method 6 (Opara [64, 65]; VWI) Plane-parallel cell
with homogeneously aligned liquid crystal is used with
special procedure for identifying interference fringes.
Texture may not be observed.

Method 7 (Hanson and Shen [66]; VThI). This method
unifies in one measurement system the interference
method by Haller and prismatic method by Chatelain.

In all these methods (1.–7.) the observation of in-
terference fringes or identification of their orders (in
VWI) is difficult. To improve efficiency of measure-
ments and overcome most disadvantages of above men-
tioned methods another technique was proposed [67–73]
using cells with fringe finesse around 80 (corresponding

to reflectance around 0.80 — Fig. 4 and Fig. 5). Then
complementary interference method (CIM) was elabo-
rated to avoid preparing special cell covers with so large
reflection index.

Fig. 5. Intensity of light (interference fringes of equal
inclination) in transmission mode as a function of phase
difference, parametrised with reflectance and fringe
finesse.

Fig. 6. Interference fringes from a wedge cell filled with nematic mixture W2016 [78, 79] recorded in reflection mode
(with inter-fringes distances) for (a) ne — ∆xe, (b) no — ∆xo, (c) empty cell — ∆xc and in transmission mode for (d) ∆n
— ∆xb; refractive indices are computed from corresponding distances between subsequent fringes: ne = ∆xc/∆xe,
no = ∆xc/∆xo, ∆n = 2∆xc/∆xb.
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Method 8 (complementary interference meth-
od [74–79]; VThI). A wedge cell confined by slightly
inclined transparent planar covers with small apex
angle (of several milliradians), filled with a nematic
liquid crystal aligned uniformly with the director field
parallel to both apex edge and covers, is used. The
interference fringes, produced in polariscope from a cell
placed between analyser and polariser of transmission
axes parallel or perpendicular or crossed at half-right
angle to liquid crystal director field and illuminated
by a normally incident non-polarised monochromatic
light, are observed in both complementary reflection and
transmission modes. The determination of no, ne, and
∆n is reduced to measurements of distances between
approximately equidistant fringes in both empty and
filled cell and simple computations. Illustrative exam-
ples are given in Fig. 6. To obtain well-visible, almost
equidistant interference fringes with approximately the
same full-width-at-half-maximum-intensity (correspond-
ing to two-wave interference, as described in Appendix
and illustrated in Figs. 4 and 6) a pure monochromatic
light from non-laser source and small wedge apex angle
should be applied. Moreover, a material of covers
(quartz, glass, or glass coated with indium-tin oxide
film) together with the thickness of a spacer on shorter
edge of a cell (producing inclination of covers) can be
combined to improve observations for a specific liquid
crystal (in experiments the plane-parallel cover plates
of dimensions 1.5 mm×35 mm×22 mm with spacers of
(40÷ 80) µm or (300÷ 500) µm for glass were used).

3. Conclusion

Physical and some technical aspects of measurements
of ordinary and extraordinary indices of samples of uniax-
ial liquid crystals were briefly discussed. Only the meth-
ods of experimental importance were described and com-
mented to explaining similarities and differences. The
details were omitted and replaced by references to basic
works.

4. Appendix. Airy’s formulae

The interference of a parallel beam of monochromatic
light passing through a flat-parallel glass plate —
Fabry–Perot’s interferometer (or a layer of homoge-
neously aligned nematic liquid crystal) can be imagined
as resulting from multiple reflection and transmission
of parallel rays [80] with phase difference between
neighbouring rays equal to

δ = 4π
λ dn cosϑ. (5)

The resulting light intensity is distributed according to
Airy’s formulae [47, 78–81]:

Ir =
4R sin2( 1

2δ)

(1−R)2 + 4R sin2( 1
2δ)

Ii =
F sin2( 1

2δ)

1 + F sin2( 1
2δ)

Ii (6)

for reflected beam and

It =
T 2

(1−R)2 + 4R sin2( 1
2δ)

Ii =
1

1 + F sin2( 1
2δ)

Ii (7)

for transmitted beam, where fractions of the transmitted
and reflected light intensities are related by T + R = 1
with corresponding coefficients of transmission and reflec-
tion at surfaces of dielectric covers and filling boundary
(with no absorption assumed both at the surfaces and in-
side the cell), F = 4R

(1−R)2 is Fabry’s coefficient of finesse
and δ is the difference of optical paths between interfer-
ing light rays. Maxima of reflection fringes and minima
of transmission fringes of equal inclination appear when
sin2( 1

2δ) = 1 and the phase difference is a half-integral
multiple of π,

1

2
δ =

2πdn

λ
= mπ − 1

2
π, m = 1, 2, 3, . . . , (8)

where d is the cell thickness in the m fringe position, n is
the refractive index and λ is the light wavelength (Fig. 5).
For normally incident light only a homogeneous interfer-
ence field is observed in each plane parallel to the plate.
The fringes of reflection or transition can be observed in
focus of lens placed on proper side of the plate [80]. In
this description the travel of light through symmetric cell
covers is omitted as it does not influence resulting image.

A wedge cell with plane surfaces inclined at a small
apex angle α to one another (α < 0.01 rad), can be in-
terpreted as a system of plane-parallel plates of different
thicknesses, to that Eqs. (6), (7) apply. Since the lo-
cal plate thickness d now relates the distance s from the
wedge apex edge by the formula d = s tanα ≈ sα, Eq. (8)
can be written in the equivalent form

2πsαn

λ
= mπ − 1

2
π, m = 1, 2, 3, . . . (9)

In relation to the intensity of normally incident light
beam, the maxima and minima of reflected and trans-
mitted light are

Imax
r =

F

1 + F
Ii, Imin

r = 0,

Imax
t = Ii, Imin

t =
1

1 + F
Ii. (10)

When a wedge cell is confined by glass plates and filled
with a liquid crystal, the reflection coefficient and fringe
finesse are small and thus the interference fringes in trans-
mitted light may not be observed in practice while in re-
flected light they are always well visible (with intensities
varying always from maximum to zero minimum), as it
follows from (10). In a birefringent system, when light
passes through a liquid crystal cell between a polariser
and an analyser with perpendicular optical axes form-
ing half-right angles with the uniformly oriented director
field, the transmitted light intensity with sharp interfer-
ence fringes follows the formula:

It = TIi sin2(
π

λ
d∆n), (11)

and is maximal when
πsα∆n

λ
= mπ − 1

2
π, m = 1, 2, 3, . . . (12)

Equations (9), (11) are accurate in a small vicinity of
wedge apex — first several tens of interference fringes
there are equidistant [74, 77, 78].
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