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In this paper we obtain the stationary solutions of various nonlinear Schrödinger equations. We use Lie
symmetry method to find the stationary solutions of the Gerdjikov–Ivanov equation, cubic-quintic and paraxial
nonlinear Schrödinger equations.
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1. Introduction

The theory of nonlinear Schrödinger equations (NLSE)
plays a vital role in various areas of physical, biological,
and engineering sciences. The governing NLSE shows up
in distinctive fields, including fluid dynamics, nonlinear
optics and plasma physics. A lot of work has been done to
find soliton solutions for various forms of NLSEs [1–20].
Eslami and Neirameh studied the exact soliton solutions
for higher order NLSE [13]. Biswas found the bright
and dark soliton solution in optical fiber under parabolic
law of non-linearity [12]. Yang et al. studied fourth or-
der variable coefficient NLSE for obtaining bright soli-
ton interaction [1]. Aouadi et al. obtained W -shaped,
dark, and bright soliton for Biswas-Arshed equation [7].
Zhou et al. studied Triki-Biswas equation for chirped
singualr solitons [8]. Zhou et al. also obtained opti-
cal solitons for unstable NLSE [9]. Inc et al. obtained
the optical solitons and modulation instability analysis
of an integrable model of (2+1)-Dimensional Heisenberg
ferromagnetic spin chain equation [15]. Khalique and
Biswas found the solution of NLSE with non-Kerr law
non-linearity [17]. Ekici et al. found the optical soli-
tons with DWDM technology and four-wave mixing [14].
Zhang et al. studied the interactions of vector anti-
dark solitons for the coupled nonlinear Schrödinger equa-
tion in inhomogeneous fibers [19]. Biswas and Khalique
found the stationary solutions for the nonlinear disper-
sive Schrödinger equation (NDSE) which is an impor-
tant generalized form of NLSE [10] and later on they also
obtained the stationary solutions for NDSE with gener-
alized evolution [11]. Here, we will find the stationary
solutions of three important NLSEs, namely, Gerdjikov-
Ivanov equation, cubic-quintic equation, and paraxial
equation.
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2. Gerdjikov–Ivanov equation

One of the famous NLSE is Gerdjikov-Ivanov (GI)
equation [18] having dimensionless form as

iqt + aqxx + ibq2q∗x + c|q|4q = 0. (1)
We consider the localized stationary solution to Eq. (1)
of the form

q(x, t) = φ(x)e iλt. (2)
Using Eq. (2) along with its derivatives into Eq. (1), we
get the real and imaginary parts, the real part is

λφ− aφ′′ + cφ5 = 0, (3)
and the imaginary parts gives us b = 0. Equation (3) has
a single lie point symmetry, let us say X = ∂/∂x. It can
be seen that the two invariants are

u = φ, (4)

v = φ′. (5)
Considering u as the independent variable and v as the
dependent variable, (3) can be rewritten as

dv

du
=
λu

av
+
cu5

av
. (6)

Solving this differential equation and rewriting in terms
of φ leads to

dφ

dx
=

√
cφ6 + 3φ2 + 6ac1

3a
. (7)

The resulting quadrature is

x+ c2 =

∫ √
3a

cφ6 + 3φ2λ+ 6ac1
dφ. (8)

The integral in (8) can be evaluated on choosing the
arbitrary constant c1 to be zero. In that case, (8)
becomes

x+ c2 =

√
a

2
√
λ

[
ln(φ2)− ln

(
3λ+

√
9λ2 + 3cλφ4

)]
.

(9)
The 3D, 2D surfaces and the density plot for Eq. (30)
have been formed in Fig. 1 by considering a = λ = 1.
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Fig. 1. (a) 3D graph, (b) 2D graph, (c) density graph.

3. Cubic-quintic equation

The dimensionless form of cubic-quintic equation is
given by [16]:

iqt + aqxx +
(
b1|q|−4 + b2|q|2 + b3|q|4

)
q = 0. (10)

We consider the localized stationary solution to Eq. (10)
of the form

q(x, t) = φ(x)e iλt. (11)
where λ is a constant and the function φ depends on the
variable x alone. Thus φ(x) satisfies the time indepen-
dent inhomogeneous nonlinear ordinary differential equa-
tion (ODE) that is given by

λφ− aφ′′ − b1φ−3 − b2φ3 + b3φ
5 = 0 (12)

Equation (12) has a single Lie point symmetry, which can
be taken as X = ∂/∂x. It can be easily seen that the two
invariants are

u = φ (13)

v = φ′ (14)
Considering u as the independent variable and v as the
dependent variable, (12) can be rewritten as

dv

du
=

1

av

[
λu− b1u−3 − b2u3 − b3u5

]
. (15)

Solving this differential equation and rewriting in terms
of the variable φ gives us

dφ

dx
=

√
6b1φ−2 − 3b2φ4 − 2b3φ6 + 6φ2λ+ 12ac1

6a
.

(16)
The resulting quadrature is

x+ c2 = (17)∫ √
6a

6b1φ−2 − 3b2φ4 − 2b3φ6 + 6φ2λ+ 12ac1
dφ,

where c1 and c2 are arbitrary constants of integration.
Thus, Eq. (17) represents the stationary solution to
cubic-quintic equation given by (10).

4. Paraxial equation

The dimensionless form of paraxial NLSE [20] is
given by

iuz +
α

2
utt +

β

2
uyy + γ|u|2u = 0. (18)

We consider that the localized stationary solution to
Eq. (18) is

u(y, z, t) = φ(ξ)e iaξ, (19)
where

ξ = y + z − ct. (20)
In Eq. (19) a is a constant and φ only depends on ξ, thus
φ satisfies the following inhomogeneous nonlinear ODE:

i(φ′ + iaφ) +
α

2

(
c2φ′′ + 2iac2φ′ − a2c2φ

)
+
β

2

(
φ′′ + 2iaφ′ − a2φ

)
+ γφ3 = 0. (21)

For simplification we will separate the real and imaginary
parts. Real part of Eq. (21) is

−
(
α

2
ac2 +

β

2
a+ 1

)
aφ+

(
α

2
c2 +

β

2

)
φ′′ + γφ3 = 0,

(22)
and the imaginary part is

(1 + αac2 + βa)φ′ = 0, (23)
where φ′ 6= 0, which means

1 + αac2 + βa = 0. (24)
Then Eq. (22) becomes

φ′′ + a2φ− 2aγφ3 = 0. (25)
Equation (25) has a single Lie point symmetry, which
can be taken as X = ∂/∂x. It can be easily seen that
the two invariants are

u = φ (26)

v = φ′. (27)
Considering u as the independent variable and v as the
dependent variable, (25) can be rewritten as

dv

du
= (2aγu3 − a2u)v−1. (28)

Solving this differential equation and rewriting in terms
of the variable φ gives us

dφ

dξ
=
√
−a2φ2 + aφ4 + 2c1. (29)
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By putting c1 = 0, the resulting quadrature is

ξ + c2 =
1

a

(
log(φ)− log

(
a−

√
a(a− u2)

))

×

√
a− φ2
−a+ φ2

. (30)

The 3D, 2D surfaces and the contour plot for Eq. (30)
have been formed in Fig. 2 by considering a = 1.

Fig. 2. (a) 3D graph, (b) 2D graph, (c) contour plot.

5. Conclusion

In this paper, we obtained stationary solutions for
the Gerdjikov–Ivanov equation, cubic-quintic NLSE and
paraxial NLSE. The stationary solutions are used in dif-
ferent areas of physics like plasma physics, nonlinear op-
tics, fluid dynamics, and many more. The solutions ap-
pear in form of Appell’s hypergeometric function and
look non-trivial. By using the same technique of Biswas
and Khalique for finding the stationary solutions for the
nonlinear dispersive Schrödinger equation (NDSE) [10],
we obtained the stationary solutions for above mentioned
NLSEs. All the results presented in this paper are new
and may be useful in optical fiber industry.
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