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In this paper, we present the first principle calculation of the different properties of the full Heusler compounds

Cd2LaB, Cd2PrB, and Cd2CeB. Our calculations are based on density functional theory, using the full potential
muffin-tin linear orbital method implemented in the LmtART code. For the determination of the exchange and
correlation potential, we used the local density approximation and local spin density approximation. The elastic
constants are also calculated. The total magnetic moment of Cd2LaB, Cd2PrB, and Cd2CeB using local spin density
approximation are 3.334, 3.482, and 3.473 µB at ambient pressure, respectively. We also present the thermal effects
using the quasi-harmonic Debye model, in which the vibrations of the network are taken into account. The effects
of temperature and pressure on structural parameters, heat capacity, entropy, coefficient of thermal expansion, and
the Debye temperatures are determined for unbalanced Gibbs functions.
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1. Introduction

The Heusler alloys have attracted attention for its var-
ious applications, as well as their remarkable physical
properties [1]. While there have been a number of works
focused on the preparation and advanced characteriza-
tion of structural and magnetic properties of these alloys,
scientists are interested in these materials due to their
extraordinary magnetic properties and industrial appli-
cations [2]. In addition to investigate thermal properties
and to do a topological study of the electronic densities,
another very rich objective is to investigate the deriva-
tion of the parameters that specify the equation of state
(EOS) and related fundamental solid state properties,
such as thermal expansion, melting temperature, and
specific heat capacity. A study of the thermodynamic
properties for these materials is well motivated by the
understanding of the chemical bonds and the cohesion of
material. Moreover, the elastic constants are related to
thermal properties according to the Debye theory. Ther-
mal properties can be unambiguously determined from
the quasi-harmonic Debye model [3]. To undertake such

∗corresponding author; e-mail: djizer@yahoo.fr

investigation, ab initio calculations are performed with
a state of the art electronic structure method, namely
the full potential linear muffin-tin orbital (FP-LMTO)
methodology, to study the structural, bonding, elastic,
and thermodynamics properties of Cd2LaB, Cd2PrB, and
Cd2CeB in its L21 phase.

Knowledge about the elastic and thermodynamic prop-
erties is important for the material design and for other
technical investigations. The elastic constants under
pressure are very important to determine the response
of the crystal to external forces, as characterized by the
bulk and shear modulus and they obviously play an im-
portant role in determining the strength and hardness
of the materials. Thermodynamic properties as a func-
tion of temperature and pressure may provide impor-
tant information to understand the phase transitions and
phase diagram. In this paper we present a first-principles
study of structural, elastic, electronic, magnetic, thermo-
dynamic properties and also the pressure effect on elastic
constants of Cd2LaB, Cd2PrB and Cd2CeB. To the best
of our knowledge, there are no experimental or theoreti-
cal works exploring the thermodynamic properties. This
article is organized as follows: in Sect. 2, we briefly de-
scribe the computational techniques used in this work.
We present the theoretical results and discussion of our
work in Sect. 3. Finally we summarize the main conclu-
sions of our work in Sect. 4.
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2. Crystal structure and computational details

The Heusler compounds [4] generally crystallize in
the cubic L21 structure (space group no. 225:
Fm3̄m). L21 structures are represented by the generic
formula X2YZ.

The full-Heusler structure consists of four penetrating
face-centered cubic (fcc) sublattices with the Z and Y el-
ements located at the (0, 0, 0) and (0.5, 0.5, 0.5), respec-
tively, in the Wyckoff coordinates, while the X1 and X2
elements are at (0.75, 0.75, 0.75) and (0.25, 0.25, 0.25),
respectively, resulting in two different rock-salt structures
[X1Y] and [X2Z] as shown in Fig. 1 for the Cd2LaB,
Cd2PrB, and Cd2CeB compounds.

Fig. 1. The crystal structure of full Heusler com-
pounds X2YZ for Cd2LaB, Cd2PrB and Cd2CeB.

The structural properties of the Cd2LaB, Cd2PrB
and Cd2CeB alloys are calculated using the FP-
LMTO method by performing local density approxi-
mation (LDA) and local spin density approximation
(LSDA) [5, 6], with density functional theory (DFT).
The multiple expansion of the crystal potential and the
electron density within muffin-tin (MT) spheres were
cut at lmax = 10. Non-spherical contributions to the
charge density and potential within the MT spheres were
considered up to lmax = 6. The cutoff parameter is
RmtKmax = 7. In the interstitial region, the charge den-
sity and the potential are expanded as a Fourier series
with wave vectors up to Gmax = 10 ua−1. Using the
energy eigenvalues and eigenvectors at these points, the
density of states is determined by the tetrahedral integra-
tion method [7]. Table I contain the parameters of this
calculation. the kinetic energy necessary to ensure the
convergence (Ecutoff), the number of plane waves used
(NPW ), and the radius of the sphere muffin-tin (RMT ).
We have chosen a Debye-like model as a simple way to
consider the vibrational motion of the lattice.

TABLE I

The number of plane wave NPW , energy cut-off Ecut−off

(in Ry) and the RMT (in a.u.) used in our calculations

Compounds RMT NPW Ecut−off

Cd2LaB
Cd: 2.796 5064 72.76662
La:2.849
B: 2.849

Cd2PrB
Cd: 2.733 5064 67.27683
Pr: 2.733
B: 2.733

Cd2CeB
Cd: 2.764 5064 70.16094
Ce: 2.764
B: 2.764

While retaining the simplicity of the Debye model, we
have followed a quasi-harmonic approach, making the De-
bye temperature, θ(V ), dependent upon the volume of
the crystal. A reasonable alternative was to consider the
isotropic approximation [11]. We apply here the quasi-
harmonic Debye model, implemented in the pseudo-code
Gibbs [8–12]. Doing so, we could calculate the ther-
modynamic quantities at any temperature and pressure
from the calculated E–V data at T = 0 and P = 0. In
addition, the elastic constants could also be calculated.
Thermal properties could be determined from the quasi-
harmonic Debye model. To undertake these investiga-
tions, ab initio calculations were performed with the FP-
LMTO method in order to study the structural, bonding
and thermodynamic properties of Cd2LaB, Cd2PrB, and
Cd2CeB.

3. Results and discussions

3.1. Structural properties

To determine the equilibrium lattice constant and to
discover how the total energy varies with the cell volume,
we performed structural optimizations on the Cd2LaB,
Cd2PrB and Cd2CeB full Heusler compounds.

The total energy dependence on the cell volume
is fitted by the Murnaghan equation of state (EOS)
given by [13]:

ET (V ) =
B0V

B
′
0

[
(V0/V )B

′
0

B0 − 1
+ 1

]
+E0 −

V0B0

B
′
0 − 1

,

(3.1)
where B0 is the bulk modulus, B′0 is the bulk modulus
derivative, and V0 is the equilibrium volume.

We summarized our results in Table II. There is no ex-
perimental data or theory available in the relevant litera-
ture which allows comparison with the specific results ob-
tained on bulk coefficients. Figure 2 for Cd2LaB, Cd2PrB
and Cd2CeB display the total dependence energies on the
cell size of the Heusler alloys.



The Elastic, Electronic and Thermodynamic Properties of a New Cd Based Full Heusler Compounds. . . 129

Fig. 2. Variation of the total energy versus the unit
cell volume for the Cd2LaB, Cd2PrB, and Cd2CeB using
LDA and LSDA.

TABLE II

The calculated values of the lattice parameter a0 (in Å),
bulk modulus B0 (in GPa) and its pressure derivative B′
for Cd2LaB, Cd2PrB and Cd2CeB.

Compounds a0 [Å] B0 [GPa] B′

Cd2LaB 6.90 75.705 3.748
Cd2PrB 6.68237 96.579 3.71257
Cd2CeB 6.757 79.476 4.18822

3.2. Elastic properties

The elastic constants of solids provide a link between
the mechanical and the dynamic properties and provide
important information about the nature of the action
of the force in a solid. In particular, they provide in-
formation about the stability and stiffness of materi-
als. Considering the cubic lattice, there are only three
independent elastic constants, namely, C11, C12, and

C44. By calculating the total energy as a function of
strain, the elastic constants (C11, C12, and C44) are
determined [14]. Based on the method developed by
Mehl [15–17], by using the volume conserving tetragonal
and orthorhombic strain, we can calculate the shear mod-
ulus (C11, C12), and the elastic constant modulus C44,
respectively.

For calculating the difference of modulus of elasticity,
C11-C12, a conserved volume orthorhombic stress tensor
is given by the following expression

↔
ε =

 δ 0 0

0 δ 0

0 0 δ2

1−δ2

 , (3.2)

where δ is the applied constraint.
Applying this constraint affects the total energy
E(δ) = (−δ) = E (0) + (C11 − C12)V δ2 +O

[
δ4
]
.(3.3)

Here E(0) is the energy of the system in the initial state
(without constraint), V is the volume of the unit cell. On
the other hand, the compression modulus for an isotropic
cubic crystal is written as a function of C11 and C12 as
follows:

B =
1

3
(C11 + 2C12) . (3.4)

For the C44 coefficient, a monoclinic stress tensor with a
conserved volume is used with the following expression:

↔
ε =

 0 δ
2 0

δ
2 0 0

0 0 δ2

4−δ2

 . (3.5)

The final form of this diagonal tensor is

↔
ε =

 0 δ
2 0

0 − δ
2 0

0 0 δ2

4−δ2

 . (3.6)

The total energy becomes

E(δ) = E (−δ) = E (0) +
1

2
C44V δ

2 + 0
[
δ4
]
. (3.7)

By combining Eqs. (3.3) and (3.4), we can easily de-
termine the two elastic constants C11 and C12, while
the third elastic constant C44 is deduced directly from
Eq. (3.7).

Figures 3–5 represent the variation of total energy
as a function of the stress for the compounds Cd2LaB,
Cd2PrB, and Cd2CeB using the LDA approximation.

We can see that the value of bulk modulus B = 1/3
(C11 + 2C12), calculated from the elastic constants is al-
most the same value as that obtained from the smooth-
ing points Etot(V ) using the Murnaghan state equation
(EOS). This gives us a good estimate of the accuracy and
precision of the elastic constants of Cd2LaB, Cd2PrB,
and Cd2CeB. Our calculated values for elastic constants
LDA are presented in Table III. The traditional me-
chanical stability conditions of the elastic constants in
cubic crystal are C11 − C12 > 0, C11 > 0, C44 < 0,
C11 + 2C12 > 0 with the condition that C11 constant
must be lower than C12 and C11 < B < C12 [18, 19].
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Fig. 3. Variation of the total energy as a function of
the stress for the compound Cd2LaB.

Fig. 4. As in Fig. 3, but for Cd2PrB.

TABLE III

The elastic constants C11, C12 and C44 (in GPa), the bulk
modulus B (in GPa) for Cd2LaB, Cd2PrB and Cd2CeB.

Compounds C11 C12 C44 B [GPa]
Cd2LaB 151.6709 38.56313 236.354 76.2657
Cd2PrB 176.8916 56.42266 312.695 96.5789
Cd2CeB 191.5456 23.44119 275.59 79.4759

Fig. 5. As in Fig. 3, but for Cd2CeB.

3.3. Magnetic properties calculated in the LSDA

Starting with the compound under investigation, all
the information regarding the partial, total, and the pre-
viously calculated magnetic moments are summarized in
Table IV. It is shown in Table IV that the calculated total
magnetic moment is almost an integer value 3.334, 3.482,
and 3.473 µB for Cd2LaB, Cd2PrB, and Cd2CeB, respec-
tively. It should be noted thatMtot is the calculated total
spin magnetic moment of the compound found by inte-
gration over the entire cell. Therefore, it is not just the
combination of the moments at the Cd (2 times), Y (La,
Pr, Ce), and B sites but respects also the moment of the
interstitial between the sites.

TABLE IV

Total and partial magnetic moments in µB (LSDA) for
Cd2LaB, Cd2PrB and Cd2CeB

X2YZ Mtot MCd MY MB

Cd2LaB 3.334 −0.157 −0.360 0.118
Cd2PrB 3.482 0.256 2.092 −0.380
Cd2CeB 3.473 0.501 0.904 0.424

3.4. Electronic band structure

We studied the band structure of the (a) Cd2CeB, (b)
Cd2PrB, and (c) Cd2LaB compounds using the LSDA
approximation.

The energy bands give the possible energies of an elec-
tron as a function of the wave vector. These bands
are therefore represented in the reciprocal space, and
for simplicity, only the directions between the points of
high symmetries in the first Brillouin zone are treated.
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Fig. 6. The band structure for the spin up (↑) and the spin down (↓) of (a) Cd2CeB, (b) Cd2PrB, and (c) Cd2LaB
alloys.

For semiconductors, the spectrum is characterized by the
presence of three bands, the valence band BV, the band
Eg forbidden or the gap and the band BC of conduc-
tion, from the lowest energy towards the higher energies,
respectively.

The energy gap is defined as the difference between the
maximum of the valence band and the minimum of the
conduction band. For the compounds Cd2YB (Y = La,
Pr, and Ce), we note that the minimum of the conduction
band and the maximum of the valence band are located
at the Fermi level of the first Brillouin zone. There is
an overlap of band at this level, i.e. the electrons move
freely between the valence band and the conduction band
under ambient conditions.

Precisely at point Γ , the energy gap equals zero in
the first Brillouin zone, so these compounds are met-
als for the majority and minority spin, as depicted
in Fig. 6a–c.

3.5. Thermodynamic properties

We applied the quasi-harmonic Debye model [20] to
obtain the thermodynamic properties of the Cd2LaB,
Cd2PrB, and Cd2CeB compounds through the calcula-
tion of the E–V . The first step is to calculate the total
energy versus the primitive cell volume (E–V ). The ob-
tained results are then fitted with a numerical EOS in or-
der to determine the structural parameters at P = 0 GPa
and T = 0 K. The macroscopic properties are derived as
a function of P and T from the standard thermodynamic
relationship. The thermal properties are determined in
the temperature range from 0.0 to 1400 K where the
quasi-harmonic model remains fully valid. The pressure
effect was studied in the 0 to 40 GPa range. The vari-
ation of the volume with respect to the temperature at
different pressures is shown in Fig. 7.

The volume is found to increase slightly with increasing
temperature. The variation of the bulk modulus B as
a function of the temperature at a constant pressure is
shown in Fig. 8.

The bulk modulus is found to decrease with increase of
temperature at a constant pressure and also to increase
with pressure at a constant temperature. In Fig. 9, it can
be seen that the impact of the temperature variation on

the Debye temperature is less than that of the pressure,
and also that the decreasing trend is nearly linear for
each pressure.

Fig. 7. The temperature effects on the lattice param-
eter of Cd2LaB, Cd2PrB, and Cd2CeB alloys.
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Fig. 8. The temperature effects on the bulk modulus
of Cd2LaB, Cd2PrB, and Cd2CeB compounds.

These investigations demonstrate clearly that we can
classify our compounds among the hard materials cate-
gory due to their high Debye temperature. In fact, the
Debye temperature of the full-Heusler alloys Cd2LaB,
Cd2PrB, and Cd2CeB at equilibrium is 288.86, 321.17,
and 288.93 K, respectively.

In addition, relevant information about the lattice vi-
brations can be obtained by the constant volume heat
capacity Cv. The investigation of Cv as a function of
the temperature at different pressures of 0, 10, 20, 30,
and 40 GPa is shown in Fig. 10. At high tempera-
tures, Cv tends to the Dulong and Petit limit, which
is rather common for all solids [21]. At sufficiently low
temperatures, Cv is proportional to T 3 [22], while at
equilibrium, the heat capacity for Cd2LaB, Cd2PrB and
Cd2CeB compounds are found to be 98.967, 97.873, and
98.9118 J mol−1 K−1, respectively.

Fig. 9. Variation of the Debye temperature with re-
spect to the temperature at different pressures ranging
from 0 to 40 GPa of Cd2LaB, Cd2PrB, and Cd2CeB
compounds.

Figure 11 represents the variation of the thermal ex-
pansion coefficient α(T ) of the Cd2LaB, Cd2PrB, and
Cd2CeB as a function of the temperature and pressure.
It is shown that, at a constant pressure and at low tem-
peratures, α increases with temperature — especially at
zero pressure — and gradually tends to a linear increase
at higher temperatures. As the pressure increases, the in-
crease of α with the temperature becomes smaller, while
at constant temperature, α decreases strongly with in-
crease of pressure.

The variation of the entropy S as a function of temper-
ature as illustrated by our results is displayed in Fig. 12.
It can be noticed that at fixed pressure P , entropy S in-
creases monotonously with the temperature T . The cur-
rent investigations demonstrated that the lattice entropy
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Fig. 10. The heat capacity depending on the tempera-
ture for different pressures from 0 to 40 GPa of Cd2LaB,
Cd2PrB, and Cd2CeB compounds.

shows strong pressure and temperature dependence. At
0 GPa and 600 K, S = 202 J mol−1 K−1. The thermal
expansion is both of theoretical and practical importance
and is essential for predicting the thermodynamic equa-
tion of state.

4. Conclusions

This work is a contribution to the study of the struc-
tural, elastic, magnetic, electronic, and thermodynamic
properties of the Cd2LaB, Cd2PrB, and Cd2CeB using
the FP-LMTO approach based on DFT within LDA and
LSDA approximations. Our calculated network param-
eters and the bulk modulus are in good agreement with
the theoretical data for similar materials. A numerical

Fig. 11. The thermal expansion versus temperature
and pressure.

first principles method was used to calculate the elastic
constants C11, C12, and C44. Our calculated total mag-
netic moment is very close to 3.334, 3.482, and 3.473 µB

per unit cell.
The use of the quasi-harmonic Debye model was suc-

cessfully applied to determine the thermal properties of
Cd2LaB, Cd2PrB, and Cd2CeB.

The theoretical heat capacity Cv is close to the limit
of Dulong–Petit, which is common to all high tempera-
ture solids. Since there are no experimental data avail-
able for these quantities, we believe that the theoreti-
cal estimate ab initio is the only reasonable tool to ob-
tain this important information and our calculated re-
sults also provide the reference for future experimental
work.
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Fig. 12. The entropy versus temperature at pressures
from 0 to 40 GPa of Cd2LaB, Cd2PrB, and Cd2CeB
compounds.
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