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In many branches of spectroscopy, the Lorentzian and Gaussian functions are assumed to describe the intrinsic

and statistical broadening effects of emission lines and of resonances. When both these broadening effects are seen,
their convolutions, the Voigt functions, are used to describe shapes of the peaks. In this work, the integrated
Voigt function, Vint, is introduced for the calculation of the peak shapes. Also, a new model of the step function,
based on physical considerations, is introduced. The model applies the same Vint that is used to calculate the
peak function. The program has been developed to analyse Kα X-ray spectra of heavy elements, measured with
high-purity germanium detectors. To illustrate the method, results of analysis of two spectra are presented.
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1. Introduction

This work introduces a new, accurate, simple, and
low computation time method of analysis of line spectra
that show intrinsic broadening according to the Lorentz
distribution function and statistical broadening follow-
ing the Gaussian distribution function. It has arisen
in various trials to improve analysis of Kα X-ray spec-
tra measured with high-purity germanium (HPGe) de-
tectors. The method uses the integrated Voigt func-
tion calculated for the full width of the analysed sec-
tion of spectrum and differences of its values at chan-
nel boundaries are used to calculate channel contents of
the fitting function for all peaks and their step func-
tions in the section. The model of the step function
is based on physical considerations. The use of the
same integrated Voigt function for the peak and for its
step function reduces considerably the computer time.
The method can be applied in analyses of all spectra
of similar forms.

Three names, the Cauchy, the Lorentzian, and the
Breit–Wigner distribution function, are used for the same
function in mathematics, classical physics, and nuclear
physics, respectively. In physics, this function is used
to describe the natural shape of emission and resonance
lines in all branches of spectroscopy. It is expressed as a
function of various variables, like frequency, wave num-
ber, wavelength or energy. This work evolved in analyses
of energy-dispersive spectra of Kα X-rays of high-Z el-
ements. For that reason all considerations are made in
terms of energy. However, all presented relations also
apply to frequency-dispersive and wavelength-dispersive
spectra.
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The Lorentzian distribution as a function of energy is
given by

L(E;E0,Γ ) =
1

π

Γ/2

(E − E0)2 + Γ 2/4
, (1)

where E0 is the energy at the peak maximum and Γ is
the full-width at half-maximum (FWHM) of the peak
(the intrinsic or natural width of the peak).

Results of all measurements in all branches of science
are subject to statistical uncertainties and limitations of
accuracy of results. They are caused by many factors,
like the nature and properties of the studied object, limi-
tations of accuracy and instability of the experimental
equipment, variations of the mains voltage, noise etc.
Most often many effects statistically add up and cause a
distribution of results that is well described by the Gaus-
sian distribution function,

G(E;E0, σ0) =
σ0√
2π

exp
(
−(E − E0)2/2πσ2

0

)
, (2)

where E0 is the position of the Gaussian peak and σ0
— the width parameter of the Gaussian peak related to
the FWHM of the Gaussian distribution by the relation
FWHM =

√
8 ln 2σ ≈ 2.355σ.

A characteristic of the Gaussian distribution function
is that it decreases very fast as |E −E0| increases, while
the decrease of the Lorentzian is much slower. For this
reason it is possible to determine natural width of a peak
even when the Gaussian width is considerably larger.

In many spectra both the Lorentzian and Gaussian dis-
tributions are effective. Since they are independent, their
convolution, the Voigt function, gives the joint distribu-
tion of a peak,

V (E;E0,Γ0, σ0) =

∞∫
−∞

L(E − E′;E0,Γ0)G(E′; 0, σ0)dE′. (3)

(107)
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In this equation, the Gaussian function was shifted to the
origin, but the value of the width (σ0) has been retained.
Generally, σ0 may vary as the energy changes over the
natural width of a peak. But most often the peak width
is much narrower than the energy of the line (E0) and a
very good approximation is a constant value, σ0 = σ(E0),
for each line in the spectrum.

Since one cannot express the integral in Eq. (3) in an
algebraic form, many approximate expressions, mostly in
the form of series expansions, have been invented (see e.g.
Refs. [1–4]). Numerical integration is also used in anal-
yses of simple spectra. As the spectroscopic techniques
improve, the statistical effects are reduced, but they will
remain to be the problem in analyses of spectra. So one
can expect further work on convolution and deconvolu-
tion methods in the future.

Investigations of X-ray spectra originated with the
measurements of characteristic X-ray wavelengths of el-
ements about a century ago. Since then new methods of
measurements have been introduced, techniques and pre-
cision have been greatly improved, new transitions were
discovered and studied, and a vast amount of data has
been accumulated.

Most data on wavelengths, line-widths, relative inten-
sities, and other properties of transitions from highly-
excited atomic states are results of studies with the ap-
plication of crystal-diffraction technique. In early times,
the choice of crystals and of X-ray standards was not
unique. Bearden [5] made a careful study of the differ-
ent X-ray standards and units in use at the time, made
measurements to determine relations among them, and
proposed a general use of ångström (Å) as the unit for
expessing the wavelengths and the W Kα1 as the stan-
dard X-ray line. He presented the recalculated results for
X-ray wavelengths in Å and energies in eV of all elements
from Li (Z = 3) to Am (Z = 95).

Systematic measurements of natural widths of charac-
teristic Kα1

and Kα2
X-ray lines of 35 elements from

Sb (Z = 51) to Am (Z = 95) and of Kβ1
and Kβ3

X-ray lines of 8 elements from Sn (Z = 50) to Ta
(Z = 73) were made by Nelson and Saunders [6] us-
ing a Cauchois-type transmission bent-crystal spectro-
meter. They used numerically-calculated convolutions of
the Lorentzian and Gaussian distribution functions to fit
the measured spectra. The results show some scatter,
particularly for the Kα2

X-ray lines.
Kessler et al. [7] made accurate measurements of K X-

ray energies and line-widths of ten elements from silver to
uranium using a newly designed double-crystal spectro-
meter. They introduced several innovations in the exper-
imental arrangement, method of measurement, calibra-
tion, control of conditions, and recording of data. Their
results show considerable improvements of accuracy and
a better agreement with the results of theory.

Wilkinson [8] published an early study of the inversion
problem, i.e. how to determine parameters of the Breit–
Wigner (Lorentzian) distribution when its convolution
with the Gaussian distribution (such as an experimental

line spectrum) is known. He derived approximate expres-
sions for the convolution function and presented in tables
and diagrams the results of calculations for the natural
width of the line, the total number of counts in the peak
and the ratio of peak heights. He did not consider effects
of distortions of the detector response function later seen
as deviations from the Gaussian distribution.

Gunnink [9] developed algorithms for fitting exper-
imental multiline spectra from samples of plutonium-
bearing materials emitting γ-rays and X-rays, with the
aim to determine line intensities and isotopic composi-
tion of the samples. Since natural widths of γ-ray lines
are very narrow, they were represented by Gaussians, al-
though natural widths of X-ray lines (of about 100 eV)
were comparable to the resolution of the used Ge(Li) de-
tectors. Therefore, the Voigt functions were used to rep-
resent the X-ray peaks. His considerations were based
on the results of Wilkinson [8]. To test the algorithms,
he made the measurement of the spectrum of Kα X-ray
lines of uranium emitted from a 235Np radioactive source.
In the spectrum, asymmetries were observed. They were
previously seen and analysed in measurements of γ-ray
spectra. The cause of the distortions of the detector re-
sponse function, the long-term and the short-term tailing,
were caused by imperfect collection of charge in Ge(Li)
detectors. When the two tailing terms were included in
the fitting function, a very good fit to the uranium Kα

X-ray spectrum was achieved.
Schulte et al. [10] made further improvements of the

analysis of Kα X-ray spectra emitted by high-Z atoms.
They measured Kα1,2 spectrum of platinum also using
Ge(Li) detectors. They noted that non-Gaussian nature
of the two peaks is clearly seen in the Lorentzian flaring
at right and left sides of the peaks. In addition to the
Voigt functions representing the peaks and the previously
introduced short-term and long-term exponential tails,
they included the step function in the fitting function.
They made the analysis of the Kα1,2

X-ray spectrum by
two methods. First, they applied the analytic represen-
tation of the peaks by the Voigt convolutions in the ap-
proximation of Armstrong [1], adding the above quoted
terms describing instrumental distortions. Second, they
calculated numerical convolution of the Lorentz functions
representing the two Kα peaks of platinum with experi-
mentally determined detection response functions which
were measured using γ-rays. Both methods resulted in
very good fits.

The work of Schulte et al. [10] was extended by Camp-
bell and Schulte [11]. They made careful measurements
of Kα X-ray spectra of four high-Z elements, ytterbium,
tantalum, platinum, and lead, and analysed them by the
two methods of Ref. [10]. They achieved very good re-
sults for the average widths of the two lines and for the
ratio of their intensities. They also made the first deter-
mination of the intensity ratios of forbidden Kα3

and of
Kα1

X-ray lines of platinum and lead.
Line spectra are regularly analysed using the Voigt

functions when Lorentzian and Gaussian widths are
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comparable. For example, using a high-resolution crystal
diffractometer, accurate measurements were made of di-
agram lines and of multiple-satellite, hypersatellite and
hypersatellite-satellite Lα1 and Lα2 X-ray lines of pal-
ladium [12], of Lα1,2 and Lβ1 X-ray lines of zirconium,
molibdenum and palladium [13], and of thorium Lγ X-
ray lines [14], produced by heavy-ion (O6+) beams of
278.6 MeV. To interpret the observed spectra, relativistic
multiconfigurational Dirac–Fock calculations were made
for the lines with variable numbers of L- and M -shell
vacancies. The calculated spectra were convoluted with
Gaussian distribution functions and these Voigt profiles
were fitted to the experimental spectra. The parameters
of the fits were the relative values of the L-, M - and N -
shell multiple-ionization probabilities at the moments of
X-ray emissions.

2. The apparatus and measurements

The measurements were made using a fast-slow coin-
cidence setup. A pair of planar HPGe detectors (sup-
plied by ORTEC, Oak Ridge, TN, USA) was used in
a close head-on geometry for the detection of X-rays
(Fig. 1). Nominal size of their sensitive volumes is
200 mm2 × 13 mm thick. The central shield was a
pair of aluminium discs with copper and gold inserts
and a double-taper opening. Small specs of radioactive
sources were put between two thin foils of polyethylene
foil, placed between the two aluminium discs, and posi-
tioned at the centre of the double-taper opening. The
diameters of the double-taper opening and holes in the
copper and gold inserts are 1.23, 1.75, and 2.07 mm,
respectively.

Fig. 1. Sectional view of the central part of the exper-
imental setup.

Pulses from the detectors were fed into a fast-slow co-
incidence system with a three-parameter 128× 512× 512
channel pulse-height analyzer. If a coincidental event oc-
curred in the range of ±100 ns, the time difference was
recorded in the time channel (k0), and amplitudes of the

pulses from the detectors were recorded in the energy (k1
and k2) channels. The data were recorded sequentially
in a PC.

Nuclear K-electron capture decay created K-shell va-
cancies in the tiny radioactive sources of 179Ta or 201Tl
used in the measurements. The vacancies were followed
by cascade emissions of Kα–L X-rays of hafnium and of
cascades of Kα–L X-rays of mercury, respectively.

Two-dimensional k1 − k2 spectra covering the region
of Kα–L X-ray cascades were formed for in-coincidence
events. Their projection onto the k1 axis for the Lγ1
band of channels in the case of hafnium resulted in the
spectrum shown in Fig. 2, and in the case of mercury
for the Lα1,2

band of channels in the spectrum shown
in Fig. 3.

Fig. 2. Kα X-ray spectrum of hafnium. The histogram
shows the experimental spectrum of Kα X-rays in coin-
cidence with Lγ1 X-rays, emitted in the decay of K-
shell vacancy states of hafnium. The measurements
were made using a pair of HPGe detectors and a pulse-
height analysing system. The curves show the results
of curve fitting using the integrated Voigt function for
the peak and the step functions. The main values of
the variable parameters are presented in the lower row
in Table I.

TABLE I

Values of the main variable parameters obtained in curve-
fitting of the experimental spectrum of Kα2 X-rays of
hafnium measured in coincidence with Lγ1 X-rays. Two
analyses of the spectrum were made assuming: (A) the
integrated Lorentzian and (B) the integrated Voigt func-
tions for the step function. Γ2 is the natural width of
the Kα2 X-ray line, Npeak — the total number of pulses
in the peak, Nstep — the maximal number of counts per
channel of the step function, f × σ — the FWHM of
the Gaussian function of the peak, and χ2/d.f. — the
reduced value of χ2.

Γ2[eV ] Npeak Nstep f × σ [eV] χ2/d.f.

A 35.86± 1.61 46989± 228 78.7± 2.3 365.5± 2.3 58.5/60

B 36.96± 1.72 46990± 222 81.6± 2.6 360.0± 2.1 52.5/60
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TABLE II

Values of the main variable parameters obtained in curve-fitting of the experimental spectrum of Kα1,2 X-rays of mercury
measured in coincidence with Lα1,2 X-rays. Two analyses of the spectrum were made assuming: (A) the integrated Lorentzian
and (B) the integrated Voigt functions for the step function. Γ1,2 are the natural widths of the Kα1,2 X-ray lines, N1,2 — the
total numbers of pulses in the peaks, Nstep,1,2 — the maximal numbers of counts per channel of the step functions, f × σ1,2 —
the FWHM of the Gaussian functions of the peaks, and χ2/d.f. is the reduced value of χ2.

Γ1 [eV] Γ2 [eV] N1 +N2 N2/N1 Nstep1 Nstep2 f × σ1 [eV] f × σ2 [eV] χ2/d.f.

A 54.73± 2.01 55.36± 2.11 88293± 302 1.020± 0.045 40.2± 1.6 40.7± 1.7 390.8± 0.97 394.2± 0.98 77.63/67

B 54.84± 2.01 55.43± 2.23 85761± 307 1.0312± 0.042 38.3± 1.5 39.0± 1.7 390.7± 0.97 394.0± 0.98 76.49/67

Fig. 3. Kα X-ray spectrum of mercury. The histogram
shows the experimental spectrum of Kα X-rays in co-
incidence with Lα X-rays, emitted in the decay of the
K-shell vacancy states of mercury. As in the case of Hf,
the measurements were made using a pair of HPGe de-
tectors and a pulse-height analysing system. The curves
show the results of curve fitting using the integrated
Voigt functions for two peaks and their step functions.
The main values of the variable parameters of the fit
are presented in the lower row in Table II. Note: Five
channels around the little “Background peak” have been
omitted in the curve-fitting procedure to avoid its effects
on the results. A constant background of 21± 1 pulses
was included in the fitting function (full line).

3. The integrated Voigt function

The Voigt distribution is most often applied in anal-
yses of experimental line spectra with the aim to deter-
mine the values of characteristic parameters (peak po-
sitions, their intensities and/or widths) of spectral lines
which are broadened by imperfect operation of experi-
mental equipment, such as the Doppler effect, tempera-
ture variations, instabilities of energy supply, and other
effects. Generally, the curve-fitting procedures are ap-
plied to solve the problem, i.e. the sought after spec-
tral parameters and other parameters that influence the
spectrum are assumed, the fitting curve is calculated,
and a comparison is made to the experimental spec-
trum. The standard criterion of quality of the fit is the
value of χ2. Various computer routines are used to find

the best fit (minimum χ2) and to determine the spec-
tral parameters based on the model of the fitting func-
tion. Since this procedure requires a large number com-
putations of the Voigt function and much computation
time, many approximations have been invented to re-
duce computation time and to achieve required accuracy
of results.

One way to speed up the computations is the use of
integrated Voigt function. Brüggemann and Bollig [15]
introduced the integrated Voigt function for spectral syn-
thesis and band integration of multiline spectra. For a
given set of parameters, one computes the Voigt func-
tions of the peaks and forms the integrated spectrum.
Simple differences between pairs of cuts in the integrated
spectrum give the intensity of the corresponding band of
lines. To calculate the Voigt functions, they used a series
expansion of the complex Voigt function.

Quine and Abrarov [16] introduced the spectrally inte-
grated Voigt function for modelling radiation transfer by
absorption and emission in gas mixtures (e.g. in lower
layers of the Earth stratosphere). Since large numbers
of lines are present in the spectra, the standard line-by-
line method requires much computer time if high res-
olution is required. They calculate the spectrally inte-
grated Voigt function for its sections around the peaks
(not for the entire analysed spectrum). They show that
by using the spectrally integrated Voigt function with low
resolution, results of high-resolution line-by-line method
are achieved with substantially reduced computer time.
They also analysed the Brüggemann and Bollig approx-
imation of the Voigt function and found that its values
are erroneous for small absolute values of the complex
variable z.

Both these works treat the problems of intensities of
lines or bands of lines and do not consider analysis of
shapes of lines.

In this work, the integrated Voigt function is intro-
duced with the purpose to analyse the peak shapes, in
particular to determine the line-widths of high-Z Kα X-
ray lines.

The integrated and normalized Voigt function of a peak
is defined by:
Vint(E;E0,Γ0, σ0) = (4)

E∫
−∞

V (E′;E0,Γ0, σ0)dE′

/ ∞∫
−∞

V (E′;E0,Γ0, σ0)dE′.
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At E = −∞, Vint = 0. As E increases, it rises very slowly
up to several FWHM below E0. At E = E0, Vint = 0.5
and the increase of Vint is fastest. For higher values of E,
the rate of increase slows down. Finally, for E =∞, Vint
reaches its limiting value 1.

In numerical calculations, the function Vint is used
in a limited interval of the variable E in the range of
the peak.

4. The step function

A distortion due to the non-perfect operation of exper-
imental systems are the so-called steps. They are seen in
experimental spectra as different numbers of counts per
channel at left and right sides of peaks. Their heights and
shapes depend on the experimental arrangement used in
the measurement. In the sample spectra shown in Figs. 2
and 3, the steps are about a hundred times lower than the
peak heights. In the following considerations, a simple in-
terpretation of their appearance is presented. Figure 4 il-
lustrates main points of the approach. A certain process
or series of processes (the Compton scattering, escape
of electron ejected by the incoming radiation from the
sensitive volume of the detector, incomplete collection
of charges, neutralization of electron–hole pairs during
the charge collection in the detector etc.) reduce pulse
heights by a certain amount. In that way a small Voigt
peak of the same Voigt shape and width as the main peak
appears below the main peak at a position corresponding
to an energy Ec. Other processes give rise to such peaks
at different positions. As a result, a continuum of small
peaks forms below and adjacent to the main peak. The
assumption that the small peaks are of the same Voigt
shape and width as the main peak seems to be reasonable
because energy changes over the width of the continuum
are small in comparison to the energy E0. To simplify
the calculations, it is also assumed that the continuum
of small peaks is of a certain width, Ew, and of a con-
stant height. These approximations are nearly correct
and seem to be good in the spectra shown in Figs. 2 and 3
and in other analysed spectra ofKα X-ray emissions from
heavy elements. A modification of the program could be
introduced to define the profile of the continuum.

Let us suppose that peaks in a spectrum with sev-
eral lines at peak positions (E0)j = Ej are represented
by the Voigt functions V (E;Ej ,Γj , σj) and their inte-
grated forms Vint(E;Ej ,Γj , σj). Consider a spectrum
with several lines at positions (E0)j = Ej . For each
peak, the above discussed model of the appearance of the
step functions allows their simple calculation using the
Vint(E;Ej ,Γj , σj) functions. Consider the Voigt function
of a peak at the energy Ej and the continuum of small
peaks below the peak in the energy range Ej−Ew to Ej ,
where Ew is the width of the continuum of small peaks
(see Fig. 4). An energy interval ∆Ec at an energy Ec
in that range gives a contribution V (E;Ec,Γj , σj) ∆Ec
at the position E, where Γj and σj are the widths of
the main peak (in the approximation explained above).

Fig. 4. Model of the step function. Complete absorp-
tion of energy of incident photons in the sensitive vol-
ume of the HPGe detector gives rise to the main peak of
the Voigt profile at the position Ej . Due to the incom-
plete absorption, pulses of reduced amplitude appear
below the main peak. In the new model, it is assumed
that a continuum of small peaks of the same form as of
the main peak forms adjacent to the main peak. A small
peak at the position Ec gives rise to a small contribution
at a position E of the spectrum. The sum of contribu-
tions over the width of the continuum (Ew) gives rise
to the step function. A simple way to calculate the step
function with the use of the integrated Voigt function is
presented in the text.

Calculations of integrals over the range of the continuum
can be complicated. However, application of the integral
Voigt function Vint(E;Ej ,Γj , σj) offers a very simple so-
lution. Namely, since the shapes of the small Voigt peaks
in the continuum are assumed to be the same as that of
the main peak at the energy Ej ,

V (E;Ec,Γj , σj) = V (E + Ej − Ec;Ej ,Γj , σj), (5)
since differences E−Ec and E+Ej −Ec−Ej are equal.
Therefore,
Ej∫

Ej−Ew

V (E;Ec,Γj , σj)dEc=

E+Ew∫
E

V (E′;Ej ,Γj , σj)dE′.

(6)
where the approximation of constant continuum of small
peaks has been applied. The integral at the right side of
Eq. (6) is equal to the difference Vint(E+Ec;Ej ,Γj , σj)−
Vint(E;Ej ,Γj , σj).

5. Numerical calculation of the fitting function

In the calculation of the fitting function three linear
scales are used: the channel numbers of the experimen-
tal spectrum k, the energy scale E, and the scale of the
variable z that is used in the subroutine for the calcula-
tion of the integrated Voigt function. The linear relations
among them are defined by the positions of two peaks of
the analysed spectrum. If only one peak is present (be-
cause a narrow section of the spectrum is analysed), then
a peak in the lower or in the higher part of the spectrum
of the same measurement is used.
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The calculations of the fitting functions should be
made using at least 20 values of the variable z per channel
of the experimental spectrum.

The computer program is composed of two parts, the
main program and the subroutine. The main program
starts the calculations using input data, an initial set
of variable parameters, vi, and of values of their shifts,
∆vi, i = 1, 2, ..., np, where np is the number of variable
parameters. In the subroutine, for each variable param-
eter, the values of χ2 are calculated for vi −∆vi, vi and
vi + ∆vi (3np values of χ2). These values are transferred
to the main program where on the basis of gradients of
χ2 a new set of vi and ∆vi is determined that is used in
the next round of calculations in the search for the best
fit. The calculations proceed until the minimum of χ2

is reached.
The main task of the subroutine is the calculation

of values of the fitting curves and of χ2. These cal-
culations proceed in the following way. For a set of
variable parameters transferred from the main program
and for each peak in the experimental spectrum, us-
ing Eqs. (3) and (4), the values of the Lorentzian and
Gaussian functions are calculated for zi = i∆z, where
i = 0, 1, 2, ..., N and ∆z is the step of the scale. The
scale should cover a broader range of energy than the ex-
perimental spectrum to allow for the calculation of the
relatively broad Lorentz peaks and the steps of peaks.
When the functions decrease below 10−12 times their
maximum values, they are set at these limiting values.
The convolution of the Lorentzian and Gaussian func-
tions, the Voigt function, is calculated using Eq. (5)
and the integrated and normalized Voigt functions
using Eq. (6).

The main result of the present article is the application
of the integrated and normalized Voigt functions in the
calculation of the channel contents of the fitting func-
tions. Each line is represented by a Voigt function of
the peak and by its step function. The sum of fitting
functions of all lines in the spectrum and of a constant
background is used in the calculation of χ2 for the given
set of variable parameters.

The energy of the middlepoint of the channel k,
Ek, and the channel width, ∆E, are determined
on the basis of the positions of two peaks in the
spectrum. Using the relation of the energy and z
scales and cubic interpolation, the values of the in-
tegrated Voigt function of the peak j, Vint(Ek −
∆E/2;E0,j ,Γj , σj) and Vint(Ek + ∆E/2;E0,j ,Γj , σj) are
calculated. The content of channel k of the peak j is
given by

npeak(j, k) = N(j)
[
Vint(Ek + ∆E/2;E0,j ,Γj , σj)

−Vint(Ek −∆E/2;E0,j ,Γj , σj)
]
, (7)

where N(j) (a variable parameter) is the total num-
ber of counts in the peak j. It should be noted that
the application of Vint resolves accurately the histogram
problem.

The content of the channel k of the step function asso-
ciated with the peak j in the approximation of constant
continuum of small peaks is

nstep(j, k) = Nstep(j)
[
Vint(E + Ew;Ej ,Γj , σj)

−Vint(E;Ej ,Γj , σj)
]
, (8)

where Nstep(j) is approximately the maximal number of
counts per channel of the step function of the peak j. If
this approximation is not satisfactory and a modulation
of continuum of small peaks is known, it could be simply
introduced in this equation.

The calculated content for the channel k is given by

ncalc(k) =
∑
j

[npeak(j, k) + nstep(j, k)] + nbgd, (9)

where nbgd is the background per channel. ncalc(k) is the
fitting function which is used in the calculation of χ2.

Attempts to include Ew in the set of variable param-
eters were not successful because the dependence of χ2

on Ew does not show a well defined minimum. If the
value of Ew is too small, the minimum value of χ2 is
large (mainly due to contributions in low channels of the
spectrum). As Ew is increased, the minimum value of
χ2 decreases. These changes of Ew affect negligibly the
results of variable parameters at minimum χ2. When
the decrease becomes negligible, the results of variable
parameters and of χ2 are considered to be final.

All calculations of the fitting function and of χ2 are
made in double precision. Since the expressions used
for the calculations of Vint bear no approximations, its
accuracy is about 1 part in 1012. The values of Vint at the
channel boundaries are calculated by cubic interpolation,
so their accuracy is slightly lower. The whole change
of Vint across a peak is split by the channel boundaries
into about 100 steps (the channels), so the accuracy of
the calculated channel contents is about 1 part in 109.
Therefore, if the assumption that the shape of the peaks
is Voigtian, the new method of their calculation using
Vint and of χ2 is very accurate, about 1 part in 109.

The accuracy of calculation of the step functions is
considerably lower because of the approximation that the
profile of the continuum of little peaks is constant and of
a certain width. However, this approximation is consid-
ered to have a small effect on results for peak parameters
because the step functions are about 100 times lower than
the peak heights.

To check the new method, its comparison to peak fit-
ting using Gaussian functions was considered, but the
detailed study of Wegrzynek et al. [17] made it pointless.
Another check was made, the calculation of the step func-
tion using the integrated Lorentzian function instead of
the integrated Voigt function. The comparison of results
for the spectrum shown in Fig. 2 is given in Table I and
for the spectrum shown in Fig. 3 in Table II. Lower values
of χ2 have been obtained, but the differences are small
because, as mentioned above, the step functions are much
smaller than the main peaks.
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6. Conclusions

Previous publications on the use of integrated Voigt
function study band integration of multiline spectra [15]
and calculation of line intensities when spectral resolu-
tion is varied [16]. This article introduces the appli-
cation of the integrated Voigt function in analysis of
shapes of line spectra with a particular attention to line
widths. When numerical convolution is used to calculate
the Voigt functions for fitting experimental line spectra,
an easy further step is to calculate the integrated Voigt
functions and their values at channel boundaries of the
experimental spectrum. The differences of these values
give the calculated channel contents of both the peak and
step functions. For each line in the spectrum and a given
set of variable parameters, just one calculation of the in-
tegrated Voigt function is needed. Using these functions,
accurate fitting functions are formed for the calculation
of values of χ2 in the search of the best fit to experimental
spectrum and for final values of the variable parameters.
The application of the integrated Voigt functions and
their differences accurately solves the histogram prob-
lem. Based on physical considerations, a simple model
of the step function has been introduced. For illustra-
tion, results of analyses of two experimental spectra are
presented in Figs. 2 and 3. They are the spectrum Kα

X-rays in coincidence with Lγ1 X-rays of hafnium and
the spectrum Kα X-rays in coincidence with Lα X-rays
of mercury. The measurements were made with a pair of
high-purity germanium detectors and a coincidence sys-
tem. The results of the analyses indicate that application
of the integrated Voigt functions in analyses of experi-
mental line spectra is an accurate, fast, and easily usable
method.
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