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The effect of an external and constant electric field on the transmission coefficient and the ballistic conductance
is investigated, for a multi-barrier asymmetric quantum structure based on monolayer graphene. It is found that
at lower angles of incidence, for certain asymmetric structures the resonant peaks in the transmission gap can be
suppressed only by the bias voltage. Furthermore, the pronounced forbidden region that appears in all conductance
profiles can be controlled using the external electric field, for an adequate choice of quantum system parameters.
Our results could be used for a better description of the transport through such quantum systems and for designing
graphene-based devices with potential applications in nanoelectronics.
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1. Introduction

The graphene is one of the most studied materials in
the last years [1], due to its unusual and fascinating prop-
erties and due to the applications in many fields, espe-
cially in nanoelectronics [2–4]. Among other interesting
applications, this amazing low-dimensional system can
be used in simple experiments for testing quantum elec-
trodynamics effects like the reflectionless Klein tunnel-
ing [5]. Graphene is a perfectly two-dimensional (2D)
monolayer of carbon atoms, packed in a hexagonal lat-
tice, in which the charge carriers (high mobility electrons
and holes with the wave vector k and −k, respectively)
are treated like relativistic particles without rest mass,
due to the interaction with the periodic potential of the
lattice [6]. This material is considered as taking part from
an extended family that includes single-, bi- and trilay-
ers, each of these members having unique properties and
potential applications [6].

In normal conditions, graphene is a gapless “semicon-
ductor” and remains always in the conducting state, this
being a major impediment concerning its potential ap-
plications for the high-speed optoelectronic devices, es-
pecially for digital circuits (logic gates or memories) [7].
However, due to the advances of modern technologies, a
band gap can be created and controlled through different
experimental procedures [7–9]. In a single-layer graphene
a band gap can also be induced and controlled by an ex-
ternal voltage, enabling the formation of gate-tunable po-
tential barriers in which the transport of charge carriers
in different conditions can be studied [2, 5, 10].

There are many interesting studies performed for
unbiased graphene-based systems, in which the Klein
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tunneling, the direction-dependent transmission and
other quantum phenomena have been revealed [11–18].
Concerning the biased structures, the resonant tunneling
has been studied for a double barrier structure, pointing
out the effects of the electric field on the conductance [19].
Also, the electrical transport properties in graphene su-
perlattices modulated by a homogeneous electric field
have been studied [20].

It is very important to mention that in [20] the current
density for a graphene (symmetric) superlattice is com-
puted and comparisons between the monolayer and bi-
layer graphene structures are performed. Our results are
different from [20] because we are focused on the asym-
metric graphene structures and the interplay between the
electric field and the asymmetry is pointed out.

Motivated by these studies, we propose here a compu-
tational model in which the effect of an external and uni-
form electric field on a multi-barrier quantum structure
based on monolayer graphene is investigated. The paper
is structured as follows. In Sect. 2 the model for comput-
ing the transmission and the conductance through the
structure is introduced. The numerical results with dis-
cussions are presented in Sect. 3 and the final conclusions
are given in Sect. 4.

2. The theoretical model

Here we present the model for computing the trans-
mission and the conductance for the ballistic transport
at zero-temperature of the charge carries through a multi-
barrier structure based on monolayer graphene, exposed
to an external and constant electric field. Such struc-
tures can be obtained experimentally through the (lo-
cally and globally) tuning of the charge carriers, using a
planar back gate, and a finite number of top gates [21].
A graphene cavity under a certain top gate can be con-
sidered as a barrier and the one between two neighboring
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gates as a well, respectively [21]. In addition, to highlight
the effect of the external electric field, we consider that
any kind of interaction, i.e. charge carriers–phonons in-
teractions or spin–orbit interactions are absent. The hon-
eycomb of the monolayer graphene contains two sublat-
tices A and B, with two atoms in the unit cell. The con-
duction and the valence band are connected in six corners
of the first Brillouin zone in reciprocal space, creating a
gapless energy spectrum E = E(kx, ky). Only the states
around two (non-equivalent) K and K ′ points, corre-
sponding to the Dirac cones that touch each other at the
Fermi level EF = 0, exhibit a linear dispersion [5, 6]. The
2D Dirac Hamiltonian for a relativistic massless fermion
at low energies, around the Dirac point, is given by

H = }vF(σxpx + σypy) + I2V (x, y), (1)
in which σx, σy are the Pauli matrices, px, py are the
components of the quasiparticle momentum, vF = c/300
is the Fermi velocity in graphene (c being the speed of
light), V (x, y) is the scalar potential, and I2 is the 2× 2
identity matrix. Considering that V (x, y) is invariant to
translations in the y direction, the wave-vector compo-
nent ky will be constant and the Dirac equation can be
written as

[− i}σ · ∇+ V (x)]Ψ(x, y) = EΨ(x, y). (2)
The operator from Eq. (2) acts on the pseudospinors
ψ(x, y) = [ψA(x, y), ψB(x, y)]T with two components,
that correspond to the sublattices A and B, respec-
tively. Note that for graphene there is not a true elec-
tron spin but a degree of freedom called pseudospin.
The pseudospins “up” and “down” correspond to the elec-
tronic states located to the A and B sublattices, re-
spectively. Due to the translational symmetry in the
y direction, one can write the general solutions of the
Dirac equation as a combination of incident and reflected
plane waves

Ψk,λ(x, y) =
a√
2

(
1

λe iφ

)
e i (kxx+kyy)

+
b√
2

(
1

−λe− iφ

)
e i (−kxx+kyy).

In Eq. (3), a and b are complex amplitudes, φ is the angle
of incidence with respect to the growth direction (x-axis),
kx, ky are the components of the wave vector along the
x and y directions, and λ are the eigenvalues of the chi-
rality operator (equivalent with the helicity operator in
the case of the real spin). The λ values depend on the
sign of the energies, λ = sgn(E−V (x)) (λ = +1 for elec-
trons and λ = −1 for holes). The above solutions will
be used for numerically computing the transmission co-
efficient and the ballistic conductance, using the transfer
matrix method for piecewise potentials.

Consequently, we consider a structure with N bar-
riers of widths Lbn(n = 1, . . . N) and N − 1 wells of
widths Lwp(p = 1, . . . N − 1), having the total lengths
Lx = L and Ly along the x and y directions, respec-
tively. We suppose that Ly is very large compared to the

barriers/wells widths, to neglect the edge effects. The
entire domain is divided in a number of m sub-domains
of the same (small) length, where the potential is
constant.

The electric field is applied along the x axis, between
x0 =0 and xm = L. The potential profile for unbiased
structure is V (x) = V0 for barriers and V (x) = 0 other-
wise. In the presence of a bias voltage the potential is
V (x) = 0 for x ∈ (−∞, 0], V0−(Va/L)x for x ∈ [xj−1, xj)
with j = 1, 2, . . .m, and V (x) = −Va for [xm,+∞),
Va = eUa being the potential due to the electric field.

Taking into account the general solutions from Eq. (3),
in a certain j sub-domain (barrier or well) we will use
vectors of the form

vj(x, y) = e ikjyy

×

(
e ikjxx e− ikjxx

λj e i (kjxx+φj) −λj e− i (kjxx+φj)

)(
aj
bj

)
, (4)

where λj = sgn[E − Vj(x)] and j = 1, 2, . . .m.
For a given Fermi energy E = ~vF|k| , with the wave

vector |k| = k = (k2x + k2y)1/2, since ky is conserved we
have

kjy = ky = k sinφin = (E/}vF) sinφin, (5)
where φin is the angle at the entrance (IN, j = 0) of the
structure. Note that for the biased structure the angle
φin is different from the angle φout, at the exit region
(OUT, j = m+ 1).

The wave vectors along the x direction in the j
sub-domain (kbjx for barriers and kwjx for wells) are

kbjx =
√

(E − Vjb(x))2/}2v2F − k2y,

kwjx =
√

(E − Vjw(x))2/}2v2F − k2y, (6)

in which Vjb(x) = V0 − (Va/L)xj and Vjw(x) =
−(Va/L)xj are the potentials in the j domain from a bar-
rier and from a well, respectively, with xj = xj−1 +L/m.
The angle between the direction of propagation and the
x axis in the sub-domain j is φj = φbj = tan−1(ky/k

b
jx)

for a barrier and φj = φwj = tan−1(ky/k
w
jx) for a well.

The wave-vector components along the x direction for
IN/OUT regions are

k(in)x = (E/}vF) cosφin,

k(out)x =
√

(E + Va)2/}2v2F − k2y. (7)

The angle φin ∈ [−90◦, 90◦] and φout =
tan−1(ky/k(out)x). Considering that a0 = ain = 1,
b0 = bin = r, am+1 = aout = t and bm+1 = bout = 0, r
and t being the reflection and transmission amplitudes in
the IN and OUT domains, respectively, we can compute
the total transfer matrix, given by the relation

Mt =

 m∏
j=1

Mj−1|j

Mm|m+1. (8)

Mj−1|j are transfer matrices that connects the vectors
vj−1(xj−1, y) and vj(xj−1, y) across an interface and the
matrix Mm|m+1, which connects the vectors vm(xm, y)
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and vout(xm, y). These matrices are calculated using the
boundary conditions (the continuity of the wave func-
tions at the interfaces) and the transmission coefficient
can be computed with the expression

T = (cosφout/ cosφin)(1/|Mt,11|2), (9)
where Mt,11 is the element on the first row/column of
the matrix Mt.

Knowing the transmission coefficient, we can finally
calculate the ballistic conductance at zero temperature,
using the Landauer–Büttiker expression [22]:

G(E) = G0

π/2∫
−π/2

T (E, φin) cosφindφin, (10)

in which G0 = 2e2ELy/(πh).

3. Numerical results and discussion

In the beginning we present some results concerning
the tunneling through a simple (N = 1) barrier structure
with Lb = 100 nm. In Fig. 1a the transmission prob-
ability versus the angle of incidence φin is plotted for this

barrier, at different bias voltages. The Fermi energy of
the incident wave is fixed at the value E = 83 meV (cor-
responding to a wavelength λ = 50 nm) and the barrier
height is V0 = 0.2 eV, these representing typical values
used in experiments [5]. We can observe from Fig. 1a
that the transmission is symmetric with respect to the x
axis and for Ua = 0 mV our results are in agreement
with those of [5]. Without the field, at normal inci-
dence (φin = 0) a perfect transmission occurs, that is
a consequence of the Klein tunneling [5]. Also, for an-
gles near to this angle of incidence the barrier remains
transparent due to the pseudospin conservation, which
ensures the absence of backscattering processes [23]. For
a constructive interference of the waves, the Fabry–Pérot
transmission resonances occur at angles greater than 30◦,
the corresponding peaks being very sharp in compari-
son with the central one. In the presence of the field,
the barrier remains perfectly transparent at normal inci-
dence and the transmission profile close to φin = 0 does
not depend on the bias voltage. When the voltage in-
creases (from 10 mV to 50 mV) the resonance peaks re-
main sharp but are slowly diminished and shifted towards
lower angles.

Fig. 1. Transmission coefficient versus the angle of incidence for a single barrier with Lb = 100 nm: (a) E = 83 meV
and Ua = 0, 10, 50 mV, (b) Ua = 50 mV and E = 83, 84, 85 meV.

An interesting observation is that the transmission is
very sensitive to a little change of the Fermi incident en-
ergy. To see this behavior, in Fig. 1b the angular depen-
dence of the transmission is displayed, for E = 83 meV
and other two energies very close to this value (84 meV
and 85 meV, respectively) at a constant bias voltage
Ua = 50 mV. Due to the symmetry, the interval for the
angles of incidence is restricted to [0◦, 90◦]. For a little in-
crease of the energy the peaks are shifted towards lower
angles and, in addition, for angles of incidence greater
than 30◦ they are slowly diminished.

In the following, in Fig. 2 the dependence of the trans-
mission on the incident energy is illustrated for the above
barrier, with V0 = 0.12 eV, at an oblique incidence
(φin = 10◦ — Fig. 2a and φin = 20◦ — Fig. 2b). In this

case a gap in the transmission can be observed (due to
the evanescent wave modes inside the barrier), which can
be modulated by the angle of incidence and the barrier
parameters (width and height) [22, 24]. For the unbi-
ased structure at φin = 10◦ , our results are in agreement
with those from [22]. When φin decreases (in our case
from 20◦ to 10◦ ), the gap becomes narrower, this being
also in agreement with [22]. We can observe from Fig. 2
that the narrowing of the gap is maintained for the bi-
ased structure. It is interesting that the gap can be also
tuned using the external field and this can be clearly seen
in Fig. 2, for both angles of incidence. For φin = 10◦ and
Ua = 25 mV, the center of the gap is shifted toward lower
energies and the width is slowly reduced. If the volt-
age increases at Ua = 50 mV, the structure is no more
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100% opaque. Due to the external field, the transmission
peaks are also shifted towards lower energies and dimin-
ished slowly. At the increase of the angle of incidence
(φin = 20◦) the transmission exhibits the same behavior,
except the fact that for Ua = 50 mV the gap persists,
even if the width is reduced. Therefore, the variation of
the external field, together with an adequate change of
the angle of incidence and geometric parameters of the
quantum system, could have potential applications in the
area of the graphene-based optoelectronic devices.

Fig. 2. Transmission versus the energy for a single bar-
rier, at two different angles of incidence, φin = 10◦ (a)
and φin = 20◦ (b), Lb = 100 nm, V0 = 0.12 eV, the bias
voltage is Ua = 0, 25, and 50 mV.

Next we focus on a topic related to the apparition of
the line-type resonance peaks in the transmission gap
(due to the coupling between wells and barriers), that de-
pends on the angle of incidence and the structure param-
eters. Such peaks are strongly suppressed in the unbiased
asymmetric double barrier structures and this could be
used in applications with resonant tunneling devices and
energy filters [24]. Therefore, we will discuss the appari-
tion of these peaks for symmetric and asymmetric multi-
barriers with N = 2, 3, and 5, in the absence/presence
of the external field. In Fig. 3 the transmission versus
energy is plotted for a symmetric (Fig. 3a and b) and
asymmetric (Fig. 3c and d) structure with N = 2, at
V0 = 0.2 eV and φin = 10◦.

For the unbiased symmetric structure (Fig. 3a), when
the incident energy values match the resonant energy in
the well, four line-type peaks (with a transmission 100%)
appear in the gap region. We mention that all peaks
have been obtained using an energy step ∆E = 10−6 eV
in the transmission gap region. In the presence of the
electric field, for Ua = 50 mV, a suppression of the peaks

can be observed (Fig. 3b), shifted towards lower ener-
gies. For the unbiased asymmetric structure (Fig. 3c) a
suppression of the resonances can be observed, which is
in agreement with the results from [24]. This suppres-
sion becomes more pregnant in the presence of the exter-
nal field, as we can observe from Fig. 3d. Therefore, at
oblique incidence, for an adequate choosing of the multi-
barrier parameters, the transmission gap can be tuned
using the external electric field. Moreover, in the pres-
ence of the field, the suppression and also a shift of the
line-type peaks can be obtained for the symmetric dou-
ble barrier structures. This type of gap tuning could also
be useful for potential applications of graphene-based
devices.

With increasing number of wells, the number of the
transmission peaks in the gap region increases, too. For
N barriers, there is an (N−1)-fold splitting of every peak,
similarly with the splitting in the case of electronic trans-
port through semiconductor superlattices [25]. Such kind
of splitting has been revealed in magnetic Kronig–Penney
graphene superlattices [26], graphene superlattices with
one-dimensional periodic potentials [27] or with rectan-
gular electric potential and δ-function magnetic poten-
tial [28]. This behavior is also present in our numeri-
cal calculations and we show in Fig. 4 the transmission
profiles for two asymmetric structures with N = 3 and
N = 5, for V0 = 0.2 eV and φin = 10◦.

For N = 3 (2 quantum wells) each line-type peak is
split into 2 peaks, resulting a total number of 8 peaks.
For N = 5 (4 quantum wells) it results in 16 peaks which
are very close and cannot be observed in Fig. 4. There-
fore, they are illustrated in Fig. 5, in which only the gap
region is selected (between 1.82 eV and 2.24 eV). For a
better view, some energy sub-domains in which T = 0
are omitted (symbolized with dashed lines in Fig. 5).

It must be pointed out that for selected asymmetric
structures, the resonance peaks are no more suppressed
in the absence of the electric field (Fig. 4a and c). Only in
the biased structures they are suppressed and the trans-
mission gap is moved towards lower energies, with the de-
gree of suppression depending on the value of the external
electric field. This effect can be seen in Fig. 4b (N = 3)
and Fig. 4d (N = 5) for a bias voltage Ua = 100 mV
and suggests again that one can modulate the gap re-
gion of the asymmetric structures by varying the exter-
nal field. The value of the field is an important param-
eter because in combination with other parameters (the
number of the wells and the angle of incidence), energy
domains in which the structure is totally transparent or
opaque can be obtained. This effect could be used for
tuning the transmission in digital quantum circuits based
on graphene.

In the following the ballistic conductance at zero tem-
perature is computed for a simple barrier and for asym-
metric multiple-barriers with N = 2 and 5, respectively.
Figure 6 shows this conductance as a function of the in-
cident energy (parts (a)–(c)) and of the potential height
V0 (part (d)), respectively.
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Fig. 3. Transmission versus the incident energy for N = 2: (a, b) symmetric structure, Lb1 = Lb2 = 50 nm, Lw =
100 nm, (c, d) asymmetric structure, Lb1 = 50 nm, Lw = 100 nm, Lb2 = 70 nm, V0 = 0.2 eV, φin = 10◦.

Fig. 4. Transmission coefficient versus the incident energy for two asymmetric structures with N = 3 (a, b) and
N = 5 (c, d); for N = 3, Lb1 = Lb3 = 50 nm and Lb2 = 70 nm; for N = 5, Lb1 = Lb3 = Lb5 = 50 nm and
Lb2 = Lb4 = 70 nm; the wells lengths are the same in both structures, Lw = 100 nm; V0 = 0.2 eV, φin = 10◦.

Fig. 5. Splitting of the resonance peaks for the asymmetric structure with N = 5, from Fig. 4.
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Fig. 6. (a, b, c) Conductance as a function of the incident energy; for N = 1, Lb = 100 nm; for N = 2, Lb1 = 50 nm,
Lw = 100 nm, Lb2 = 70 nm; for N = 5, Lb1 = Lb3 = Lb5 = 50 nm,Lb2 = Lb4 = 70 nm and Lw = 100 nm;
(d) conductance as a function of the potential height V0, for N = 2, Ua = 25 mV and three different widths of the well
(in this case Lb1 = 50 nm and Lb2 = 70 nm).

For the unbiased simple barrier structure (solid line
in Fig. 6a), at lower energies the conductance exhibits
an oscillatory behavior, this being a consequence of the
transmission resonances. With increase in energy, a pro-
nounced forbidden domain appears, this being a valley
of almost zero conductance, due to the existence of the
transmission gap. The forbidden region also appears for
N = 2 and 5 (Fig. 6b and c), but the oscillatory be-
havior of the conductance is more pronounced and the
frequency of oscillation increases with the number of bar-
riers (and wells). In addition, certain peaks appear in the
valleys, originating from the line-type resonances in the
transmission gap. We can see that for all biased struc-
tures (dashed and dotted lines in parts (a), (b), and (c),
respectively), the conductance profile is shifted to lower
energies (due to external electric field) and the amplitude
of oscillations is diminished. This behavior is indicated
here only for Ua = 25 mV (at N = 1) and Ua = 50 mV
(at N = 2 and 5), but it is quite clear that the shift
for lower energies continues with the increase of the
bias voltage.

It must be pointed that the conductance is also an os-
cillatory function on the barrier height V0. This behavior
is illustrated in Fig. 6d for the asymmetric double bar-
rier, for an incident energy E < V0 (the Klein tunneling
region) and a bias voltage Ua = 25 mV. We can see that
the conductance increases with increase in V0 and the
oscillations can be modified by varying the well width

(20, 50, and 100 nm, respectively). Finally, we mention
that our investigations can be extended to other quan-
tum structures based on graphene, for different parame-
ters of the barriers and wells, in external electric or/and
magnetic fields.

4. Conclusions

Our results are new and highlight the effect of the elec-
tric field on various types of asymmetric multi-barrier
structures based on monolayer graphene. The interplay
between the field-induced asymmetry and the asymme-
try of the selected quantum structures could be useful
for obtaining a convenient tuning of the transmission in
potential applications with graphene-based devices. As
we mentioned before, for certain unbiased structures our
results agree with those obtained previously by other au-
thors, confirming the accuracy of our numerical calcu-
lations. Our numerical analysis clearly reveals that for
lower angles of incidence, in certain unbiased asymmetric
structures (with two or four wells) the line-type resonant
peaks in the transmission gap are not suppressed.

These peaks can be tuned (suppressed or shifted) only
for biased structures, using the external field. For all in-
vestigated structures, the ballistic conductance presents
a forbidden region, due to the existence of the trans-
mission gap. By an adequate adjusting of the structure
parameters (the potential height, the number, and the
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lengths of the barriers/wells) the conductance can be con-
trolled using relatively small values of the electric field.
Such control of the line-type resonance peaks and of the
conductance, respectively, could also be useful in design-
ing resonant tunneling diodes or other high-speed devices
based on graphene.
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