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In this paper, we have theoretically and analytically examined the impact of the quantum size effect on
mechanical and thermodynamic properties of the single crystalline quantum dot. Spectra of allowed phonon
energies, as well as thermodynamic characteristics, are analyzed using the method of two-time dependent Green’s
functions. The internal energy of the system as well as the thermal capacitance of the quantum dot in a low-
temperature region are found. The behaviour of quantum dot’s specific heat with temperature is compared to
that of corresponding bulk structures, as well as those of thin films, superlattices, and quantum wires. It has been
shown that at extremely low temperatures thermal capacitance of the quantum dot is significantly lower than the
thermal capacitance listed for above structures. Consequences of this fact are discussed in detail and its influence
on kinetic and thermodynamic properties of materials are estimated.
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1. Introduction

Determining the basic physical properties underlying
the nanostructures is essential for their implementation.
As a consequence of several various factors, nanostruc-
tures are characterized by a variety of diverse features,
such as superconductivity, transport of carriers, heat-
insulation, acoustic properties, and many other. Most,
if not all of these factors, are directly related to the exis-
tence of the boundaries of the structure. The main goal
of this paper, which can be considered as a continuation
of our previous research, is to investigate how dimen-
sional phonon confinement in low-dimensional structures
(quantum dots) influences its thermodynamic properties,
which forms the basis for the concept of phonon engi-
neering (nanophononics) [1–5]. Research of this type has
become extremely important in recent years, due to the
great commercializing potential of novel two-dimensional
materials such as graphene, being the lightest, strongest,
and most conductive material known today. Examining
the influence of the phonon subsystem on the properties
of the graphene is mandatory in order to tailor graphene’s
mechanical properties [6–10]. Phonons are collective ex-
citations of atoms (molecules) and represent the most
important subsystem in condensed matter. Without
them, it is almost impossible to examine and describe the
acoustical characteristics, as well as the thermal, conduc-
tive, and superconductive properties of solids. Thermal
properties of nanostructures have attracted a lot of at-
tention lately: the influence of size effects on thermal
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conductivity is becoming extremely important for heat
removal and device design and reliability. It is also fore-
seen that the use of nanostructured components may in-
crease the sensitivity of measuring instruments, which in
turn leads to new experimental results.

Quantum dots are confined crystalline struc-
tures [11–13] in which conditions on boundary surfaces
differ from those inside the dots, i.e. translational sym-
metry is disrupted alongside all three crystallographic
directions (x, y, and z, Fig. 1). Providing that there
is no disturbance of the crystalline structure inside
the dot (between its boundary surfaces), we assume
that the quantum dot is ideal. On the contrary, if
there are impurities, vacancies, and the like in the
crystalline lattice, the quantum dot is deformed. The
scope of our study in this paper is the ideal quantum dot

Fig. 1. Quantum dot model.
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of a simple cubic crystalline structure consisting of
identical atoms, with one atom per elementary cell. At
first glance, this fact may seem like a big limitation in
terms of the applicability of the described model, but
this is not the case: in accordance with the method
of achievement, statistical and dynamical equivalence
between rectangular and structures with lower symme-
try [5], it is applicable to a large number of crystalline
structures. In the case of monoclinic structures, for
instance, the method of equivalence is applicable with
no restrictions.

The basic crystallographic parameters of the chosen
model structure, in the nearest neighbours approxima-
tion, are
ax = ay = az = a, Nx,y,z ∼ 10,

Cα,αn,m = Cαn,n±λ ≡ Cαnxnynz ;nx±1,nynz
=

Cαnxnynz ;nxny±1,nz
= Cαnxnynz ;nxnynz±1 ≡ C

α,

Cαnx,ny,0;nx,ny,−1 = Cαnx,ny,−1;nx,ny,0 = (1+ε)Cα,

Cαnx,ny,Nz ;nx,ny,Nz+1 = Cαnx,ny,Nz+1;nx,ny,Nz
= (1+γ)Cα,

Cαnx,0,nz ;nx,−1,nz
= Cαnx,−1,nz ;nx,0,nz

= (1+σ)Cα,

Cαnx,Ny,nz ;nx,Ny+1,nz
= Cαnx,Ny+1,nz ;nx,Ny,nz

= (1+ϕ)Cα,

Cα0,ny,nz ;−1,ny,nz
= Cα−1,ny,nz ;0,ny,nz

= (1+ϑ)Cα,

CαNx,ny,nz ;Nx+1,ny,nz
= CαNx+1,ny,nz ;Nx,ny,nz

= (1+φ)Cα,

(ε, γ, σ, ϕ, ϑ, φ) ≥ −1, (1)
where a is the lattice constant, Nx,y,z are the num-
bers of atoms along x, y, and z directions, Cα is the
straining Hooke elastic constant in direction α, nx,y,z ∈
(0, 1, 2, · · · , Nx,y,z) is the atom site counter along x, y,
and z directions, and vector λ associates atom in place
n with its nearest neighbors.

Respecting above facts, we are able to say the following
about the described model structure:

1. Quantum dots have six boundary surfaces: two of
them are parallel to the xy planes (for z = 0 and
z = Lz = Nza), two to xz planes (for y = 0 and
y = Ly = Nya), and two to yz planes (for x = 0
and x = Lx = Nxa). Thus, these structures are
confined along x, y, and z directions. Along x-axis,
there are Nx+1 atoms, along y-axis, Ny+1 atoms,
and along z-axis, Nz + 1 atoms.

2. Torsion Hooke’s elastic constants Cαβ are negligi-
ble relative to the straining constants Cα. Besides
that, it is considered that there is an interaction

between atoms in boundary layers of the quan-
tum dot and external areas, disregarding that
along x, y, and z directions outside boundary sur-
faces there are no atoms belonging to the quan-
tum dot. However, boundary atoms are coupled
through changed Hooke’s forces with the atoms of
the external environment [14–16]. In accordance
with these conditions, elastic constants which de-
scribe interactions between atoms of boundary sur-
faces and external environment are modified with
appropriate coefficients ε, γ, σ, ϕ, ϑ, and φ. These
perturbations of boundary surfaces do not dis-
turb the macroscopic geometry of the structure
and only redefine the small movements of atoms.
A simpler but more pragmatic approach implies
that the quantum dot atoms are surrounded by
atoms/molecules belonging to only two different en-
vironments (σ, ϕ, ϑ, φ 7→ ε).

With respect to described model and regarding the fact
that layers with nx ≤ −1 and nx ≥ Nx + 1, ny ≤ −1 and
ny ≥ Ny + 1 and also nz ≤ −1, and nz ≥ Nz + 1 are not
present, we have to take into account the following:

uα;nx,ny,nz
= 0, −1 ≥ nx,y,z ∧ nx,y,z ≥ Nx,y,z + 1,

(nx,y,z 6∈ [0, Nx,y,z]).

These boundary conditions are in accordance with the
free surface model, but at this point, it should be noted
that there are also other approaches. One of them, which
is often found in literature, is the rigid walls model (or
frozen surfaces model), where boundary conditions with
zero atomic displacements are required at the boundary
surfaces. In this paper we have chosen flexible bound-
ary surfaces, considering that this is closer to the real
situation in which the quantum dot can “breathe”. On
the other hand, the rigid walls model presumes the ap-
pearance of phonon standing waves with nodes at the
boundaries.

2. Theoretical analysis

Starting point of our theoretical approach is the
standard Hamiltonian of the phonon subsystem for
bulk structures [16–18], written in the harmonic as
well as in the nearest neighbors approximations, which
is adapted to the model-structure of quantum dot
presented in Fig. 1

H = T + Veff , T =
∑
α;n

p2α;n
2M

, (2)

Veff =
∑

α;nx,ny,nz

Cα
4

[ (
uα;nx+1,ny,nz−uα;nx,ny,nz

)2
+
(
uα;nx−1,ny,nz−uα;nx,ny,nz

)2
+
(
uα;nx,ny+1,nz−uα;nx,ny,nz

)2
+
(
uα;nx,ny−1,nz

−uα;nx,ny,nz

)2
+
(
uα;nx,ny,nz+1−uα;nx,ny,nz

)2
+
(
uα;nx,ny,nz−1−uα;nx,ny,nz

)2 ]
, (3)
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where uα;n are the small movements of atom in position
n ≡ (nx, ny, nz) from its equilibrium position in direction
α, and pα;n are the corresponding momentum, and M is
the mass of the atoms.

We are looking for the phonon dispersion law with
the help of the phonon two-time commutator Green’s
function [18–20]:

Gαn,m(t− t′) ≡ 〈〈uα;n(t)|uα;m(t′)〉〉 =

Θ(t− t′)〈[uα;n(t), uα;m(t′)]〉0, (4)
which satisfies the equation of motion
−Mω2Gαn,m(ω) =

− i~
2π
δn,m +

1

i~
〈〈[pα;n, H] |uα;m〉〉ω. (5)

By calculating corresponding commutators in the Green
function which appears in Eq. (5), we obtain the system
of (Nx + 1) × (Ny + 1) × (Nz + 1) nonhomogeneous
algebraic-difference equations with the same number of
undetermined Green’s functions [10–13]:

Gnx−1,ny,nz
+Gnx,ny−1,nz

+Gnx,ny,nz−1

+℘Gnx,ny,nz
+Gnx,ny,nz+1 +Gnx,ny+1,nz

+Gnx+1,ny,nz
= Knxnynz

, (6)
where

℘ =
[
%− ε

(
δnx,0 + δnx,Nx

+ δny,0 + δny,Ny
+ δnz,0

)
−γδnz,Nz

]
, % =

ω2

Ω2
α

− 6, Ω2
α =

Cα
M
,

Knx,nynz =
i~

2πCα
δnx,nynz,mxmymz . (7)

In order to find the spectra of the allowed phonon en-
ergies amounts, we must determine the zeroes of the de-
terminant of the system of Eq. (6). This task, in general,
is not analytically solvable (it can be solved numerically
with given parameters ε, γ,Nx, Ny, and Nz). Hereafter,
we will give our attention to the model of the loose sur-
faces [16, 17], when surface perturbations are negligible,
i.e. ε = γ = 0. In this model, an elastic interaction
of the quantum dot surface atoms with atoms/molecules
of surrounding environments is of the same nature and
strength. We call it “a model of the ideal quantum dot
with free surfaces”. The reason for choosing this model is
that there is an analytical solution for the phonon disper-
sion law and other physical properties. Besides that, in
determining the micro- and macroscopic physical prop-
erties of the sample this choice favours the quantum size
effect [1,9], while the contributions of all other confine-
ment effects (shape, etc.) are negligible and can only
slightly affect changes caused by the size effect [2, 3, 11–
13]. In that case, the system of Eq. (6) reduces to

Gnx−1,ny,nz
+Gnx,ny−1,nz

+Gnx,ny,nz−1

+%Gnx,ny,nz
+Gnx,ny,nz+1 +Gnx,ny+1,nz

+Gnx+1,ny,nz = Knx,nynz , (8)

and undetermined Green’s functions from Eq. (3) can be
expressed as follows:

Gnx,ny,nz =
Dnx,ny,nz

DNx+1,Ny+1,Nz+1
, (9)

where Dnx,ny,nz
is the determinant of the variable and

DNx+1,Ny+1,Nz+1 is the three-dimensional determinant
of the system. Poles of Green’s functions by which the
phonon dispersion law is determined can be obtained on
condition that the determinant of the system is equal to
zero
DNx+1,Ny+1,Nz+1(%) = 0. (10)

Determinant DNx+1,Ny+1,Nz+1 can be expressed through
Chebyshev’s polynomials of second order, by which the
phonon dispersion law can be obtained in form

Eαk = 2

√
sin2 akx(χ)

2
+ sin2 aky(µ)

2
+ sin2 akz(ν)

2
,(

χ = 1, 2, . . . Nx + 1, µ = 1, 2, . . . Ny + 1,

ν = 1, 2, . . . Nz + 1
)
, (11)

similar to that of the bulk structures. The main differ-
ence is, however, that phonon quasimomentum in quan-
tum dots takes discrete values in all three directions. It
can also be seen that minimum phonon energy in quan-
tum dots differs from zero, and is given by

∆min = Eαkmin
x ,kmin

y ,kmin
z

=

2

√
sin2 ak

min
x (χ)

2
+ sin2

akmin
y (µ)

2
+ sin2 ak

min
z (ν)

2
,

kmin
x (χ = 1) =

π

a

1

Nx + 2
, kmin

y (µ = 1) =
π

a

1

Ny + 2
,

kminz (ν = 1) =
π

a

1

Nz + 2
, (12)

while the corresponding minimum phonon frequency is

ωmin
α = 2

v

a

[
sin2 π

2 (Nx + 2)
+ sin2 π

2 (Ny + 2)

+ sin2 π

2 (Nz + 2)

]1/2
. (13)

Although in crystals with a simple elementary cell only
acoustic phonon branches can occur, the previous analy-
sis has shown that due to the influence of the quantum
size effect there is an energy gap, which is a characteristic
of optical phonon modes. It can, therefore, be concluded
that in quantum dots, as in other nanostructures, acous-
tic phonons of the optical type appear.

3. Phonon thermodynamics of quantum dots

In order to determine thermodynamic properties of
quantum dots, it is necessary to find corresponding val-
ues for Debye’s wave vector kD and Debye frequency ωD.
We assume that phonon wave vectors of quantum dot
lie in the sphere of radius kD. Since the translational
symmetry of the quantum dot is interrupted alongside
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all three directions, possible values of wave vectors along
x, y, and z directions are:

kx/y/z ∈
[

1

Nx/y/z + 2

π

a
,
Nx/y/z + 1

Nx/y/z + 2

π

a

]
⇒ ∆kx/y/z =

Nx/y/z

Nx/y/z + 2

π

a
,

and we obtain

V =

{
4
3π
(
akdD

)3
a3∆kx∆ky∆kz

⇒

kdD =
3

√
3π2

4a3
3

√
Nx

Nx + 2

Ny
Ny + 2

Nz
Nz + 2

⇒

kdD = kbD
3

√
Nx

2 (Nx + 2)

Ny
2 (Ny + 2)

Nz
2 (Nz + 2)

,

where kbD =
3
√

6π2/a is the Debye wave vector in corre-
sponding unbounded (bulk) structure. For the number
of allowed values of k per volume unit of k-space, next
adjusted general expression is applicable

D(ω)=
3NxNyNza

3

(2π)3

π∫
0

sin θdθ

2π∫
0

dϕ

kD∫
kmin

k2dkδ(ω−vk) =

NxNyNza
3

2π2

ω2

v3
(14)

and by applying the normalization condition (according
to fact that the total number of phonon states is equal
to the number of atoms)
ωD∫

ωmin

D(ω)dω = N ⇒

NxNyNza
3

2π2v3

ωD∫
ωmin

ω2dω = (Nx + 1) (Ny + 1) (Nz + 1) ,

we obtain an expression for Debye frequency in quantum
dot in the forms

ωD = ωbD

{
Nx + 1

Nx

Ny + 1

Ny

Nz + 1

Nz
+

4

3π2

[
sin2 π

2 (Nx + 2)

+ sin2 π

2 (Ny + 2)
+ sin2 π

2 (Nz + 2)

]3/2}1/3

, (15)

where ωbD = kbDv is the Debye frequency in the corre-
sponding bulk-structure. It can be seen that the Debye
frequency has somewhat greater value in the quantum
dot than in an unbounded structure.

Internal energy of the quantum dot is calculated in
terms of standard definition form [18, 20]:

U =

ωD∫
ωmin

dωD(ω)〈n(ω, T )〉~ω =

ωD∫
ωmin

dω

(
ω2V

2π2v3

)

×
(

~ω

e
~ω

kBT − 1

)
= 9NkBT

(
T

TD

)3
xD∫

xmin

x3

ex − 1
dx, (16)

where V = Na3 = (Nx + 1)(Ny + 1)(Nz + 1)a3,
x = ~ω

kBT
, xmin = ~ωmin

kBT
, and xD = ~ωD

kBT
= TD

T . In a low
temperature region, when xD → ∞, the last expression
becomes

U = 9NkBT

(
T

TD

)3
∞∫

xmin

x3

ex − 1
dx =

9NkBT

(
T

TD

)3
 ∞∫

0

x3

ex − 1
dx−

xmin∫
0

x3

ex − 1
dx

 =

9NkBT

(
T

TD

)3
π4

15
−

xmin∫
0

x3

ex − 1
dx

 . (17)

On the basis of expansion (et − 1)
−1

=
∑∞
j=1 e−jt the

last equation becomes

U = 9NkBT

(
T

TD

)3
π4

15
−
∞∑
j=1

xmin∫
0

x3 e−jxdx

 .

Integral from this expression is analyzed by multiple
partial integration

U = 9NkB
T 4

TD
3

π4

15
+

∞∑
j=1

1

j
e−jxmin

×
(
x3min+

3

j
x2min+

6

j2
xmin+

6

j3

)
−
∞∑
j=1

6

j4

 . (18)

To find the expression for the thermal capacitance
per a unit cell (here: per atom), the standard defini-
tional [18, 20] form is used: C∗ = 1

N
∂U
∂T . In accordance

with that we obtain

C∗ =
12π4

5
kB

(
T

TD

)3

+ 9kB

(
T

TD

)3

×
∞∑
j=1

1

j
e−jxmin

[
1

j
x4min +

(
1 +

3

j2

)
x3min

+
6

j

(
1 +

1

j2

)
x2min +

6

j2

(
3 +

1

j2

)
xmin +

24

j3

]
,

or

C∗ =
12π4

5
kB

T 3

f3 (Nx, Ny, Nz)
+ 9kB

1

f3 (Nx, Ny, Nz)

×
∞∑
j=1

1

j
e−j

∆
T

[
1

j

∆4

T
+

(
1 +

3

j2

)
∆3 +

6

j

(
1 +

1

j2

)
∆2T

+
6

j2

(
3 +

1

j2

)
∆T 2 +

24

j3
T 3

]
, (19)

where T ≡ T/T bD, ∆ ≡ ωmin/ω
b
D, (T

b
D, and ωbD are the

Debye temperature and frequency for bulk structure, re-
spectively) and relative Debye’s frequency related to bulk
ones is
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ωD

ωbD
=

{
Nx + 1

Nx

Ny + 1

Ny

Nz + 1

Nz
+

4

3π2

[
sin2 π

2 (Nx + 2)

+ sin2 π

2 (Ny + 2)
+ sin2 π

2 (Nz + 2)

]3/2}1/3

≡ f(Nx, Ny, Nz).

It is well known that the phonon part in the thermal ca-
pacitance of the system is described with cubic temper-
ature dependence. For comparison of these dependences
for the bulk-structure and the quantum dot, the last ex-
pression is divided by the constant C0 = 12π4kB

5 , whose
dimension is equal to the dimension of thermal capaci-
tance

C =
T 3

f3 (Nx, Ny, Nz)
+

15

4π4

1

f3 (Nx, Ny, Nz)

×
∞∑
j=1

1

j
e−j

∆
T

[
1

j

∆4

T
+

(
1+

3

j2

)
∆3+

6

j

(
1+

1

j2

)
∆2T

+
6

j2

(
3+

1

j2

)
∆T 2+

24

j3
T 3

]
. (20)

Figure 2 shows the relative (non-dimensional) thermal ca-
pacitances of bulk structure, superlattice, ultrathin film,
quantum wire, and quantum dot subject to the relative
temperature T in the low-temperature region.

Fig. 2. Low-temperature behavior of thermal capaci-
tance for bulk and quantum dot.

Determining the phonon impact on the physical, and
primarily thermodynamic properties of low-dimensional
structures (ultrathin films, superlattices, and ultranar-
row wires) has been the subject of research of our team
for many years and the results of these studies have been
published [4–6, 16, 17, 21–26] in the previous period.
Here, we will use some of these results in order to com-
pare them with the results obtained in this paper for
quantum dots.

It can be seen that phonon contribution to the thermal
capacitance of crystalline quantum dot is lowest, com-
pared to that of more massive specimens. On this basis,
it can be concluded that the quantum dots are the weak-
est thermal as well as electrical conductors.

4. Conclusions

Application of nanostructures requires a knowledge of
their fundamental physical properties. Lately, a great
interest has been induced by the thermodynamic as-
pect associated with phonon movements through the
nanometer-sized samples. Spatial confinement of acous-
tic and optical phonons in nanostructures unavoidably
changes their properties in comparison with bulk mate-
rials. Their interactions are altered by the effects of di-
mensional constraint on the phonon modes in nanostruc-
tures. Phonon confinement in low-dimensional structures
leads to the emergence of the quantized energy sub-bands
with the corresponding alteration of the phonon density
of states. The changes in the phonon dispersion law
lead to a modification in the electron–phonon scattering
rates, optical properties of the nanostructured materials,
and phonon scattering on defects, boundaries, and other
phonons. In this paper, we applied a strict theoretical ap-
proach in order to examine the influence of the quantum
size effect on the thermodynamic properties of a quan-
tum dot that is surrounded by different materials from
every side. In this respect, desirable properties of the
structure can be modified by changing the lattice con-
stant, i.e. dimensions of the quantum dot, by inserting
atoms of different kinds and by changing the parameters
ε, γ, σ, ϕ, ϑ, and φ. However, considering the technol-
ogy of fabricating quantum dots, there is no reason to
assume that it will be on all sides surrounded by differ-
ent materials. A simpler but more pragmatic approach
implies that the quantum dot atoms are surrounded by
atoms/molecules belonging to only two different environ-
ments (σ, ϕ, ϑ, φ 7→ ε).

With respect to all of the above we come to the fol-
lowing conclusions: since phonons with the Debye fre-
quencies are responsible for electrically and thermically
induced transport properties of materials, it follows that
the quantum dot will be inferior electrical and thermal
conductor in contrast to the relative massive structures,
providing there are no chemical and structural differences
between them. On the other hand, it is a well known
fact that the more inferior electrical conductor material
is (under normal conditions), the better superconductor
it becomes. Due to that, the experimental fact can be
concluded and justified, that in very spatially confined
structures more qualitative superconductive properties
have been achieved.

These facts point out that the key role in high TC su-
perconductors comes from the low dimension of the ob-
served structure. More detailed answer to this question
will be obtained by examination of the electronic subsys-
tem in quantum dots.
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The results obtained, however, cannot be considered
final, since the analyses were carried out on ideal sam-
ples of perfectly correct shapes and with ideally smooth
surfaces. Real samples, on the other hand, cannot be de-
void of defects and irregularities, and in structures of such
small dimensions, as quantum dots are, this irregularity
can significantly affect their physical (thermodynamic)
properties. It is well known that the thermal behaviour
of materials is influenced by many different factors: the
density of the sample, its thermal expansion, the share of
impurities, surface absorption, dimensions, etc. whereby
for each particular material the different effect is pre-
dominant. Only with thorough theoretical and experi-
mental analysis of individual properties of nanostructures
and all essential influences on them, can the thermody-
namic behaviour of materials be completely examined.
To that end, it is necessary to implement much more
theoretical calculations and develop different methods for
solving them.
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