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Motivated by studying quantum topological states we analyze the mesoscopic non-linear sigma model in two
dimensions. We find systematically analytical solutions for the spatially depending magnetization density for
arbitrary winding number under the constraint of topological protection. The methods allows also to get analytical
expressions for other alignments such as a quadrupolar one. The inhomogeneous energy and skyrmion densities
are calculated. Using a formulation of the local magnetization density in terms of a two component complex spinor
field we get the related vector potential playing the role of the Berry curvature. The related magnetic field offers
a spatial dependence which is completely different from electrodynamics. The dynamical stability of the solutions
are discussed.
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1. Introduction

Skyrmions are stable field configurations which are
protected by a topological constraint. Originally the con-
cept had been introduced by Skyrme [1] in the context
of particle physics following Heisenberg’s idea to identify
particles as inhomogeneous field configurations with fi-
nite and localized energy density. In a previous paper we
have considered such a situation for the non-linear sigma
model [2] based on [3]. A similar procedure has been
applied by [4] and in more detail by [5, 6] for a review
comparison [7]. The motivation of the present note is
to offer a systematic way in getting analytical topologi-
cally protected skyrmion configurations for the isotropic
sigma model without any additional chiral terms. Using a
representation of the magnetization density in terms of a
complex spinor field [8] the system reveals a gauge poten-
tial which adopts the Berry connection well established
in quantum systems. The related magnetic field playing
the role of the Berry curvature can be calculated for cer-
tain skyrmion alignments such as a configuration with
arbitrary winding number and for instance a quadrupo-
lar arrangement. Moreover, we discuss the dynamical
stability of the analytical solutions.

2. Sigma model and gauge potential

The nonlinear-sigma model is a classical continu-
ous version of the quantum Heisenberg model. It is
formulated in terms of a local real three component
magnetization field n(x, t) with a fixed length which is
related to the conservation of the total spin [9]. The
Hamiltonian reads in two-dimensional case

H =

∫
d2xh(x), h(x) =

J

2
(∇n)2. (1)
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Notice that chirality in form of a term n · ∇ × n
[10–12] is not included in our model. Because of
n(x,−t) = −n(x, t) the energy density h(x, t) is
invariant under time reflection. The constraint n2 = 1
implies a local sphere in spin space, the total surface of
which is a topologically protected invariant

Q =
1

4π

∫
d2xn · (∂xn× ∂yn) =

1

4π

∫
d2xq(x). (2)

Here we have introduced the density of the topological
invariant (skyrmion density) q(x) = q(x, y) on the x–y
plane. The topological invariant Q is changed under
time reflection Q(−t) = −Q(t) whereas the energy is
invariant under time reflection. Moreover, Q changes its
sign in case the coordinates x and y are interchanged
whereas the energy density remains invariant. This fact
leads to a degeneration of skyrmion solutions discussed
later. The Hamiltonian is altered under local rotation
n(x)→ n(x) +Θ(x)× n(x) to

δH=J

∫
ddxΠ α

µ ∂µΘα, with Π α
ν =εαβγnβ∂νnγ . (3)

The tensor Π α
µ , α = 1, . . . , n = 3, µ = 1, . . . , d = 2 is

the spin-current density which appears due to the local
distortion. In terms of Π µ = J(n×∂µn) the topological
density in Eq. (2) can be expressed by

q(x) =
1

2
(∂µnα)(ενµΠ

α
ν ) ≡

1

2
(∂µnα)Γ

α
µ . (4)

Here the quantity Γαµ is related to the spin current and
fulfills

(∂µnα)
2 = (Γαµ )

2. (5)
To reflect the properties of the underlying spins as
complex quantities and to separate the fields and the
local gauge potential let us introduce [8, 10]:

nα = ψ†σαψ, ψ† = (ψ∗1 , ψ
∗
2). (6)

Here σα are the (complex) Pauli-matrices whereas
ψ(x) is a two-component complex spinor field with the
properties
|ψ|2 = 1, → ψ∂µψ

† = −ψ†∂µψ. (7)
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After a straightforward calculation the Hamiltonian
in Eq. (1) reads

H = 2J

∫
(|∂µψ|2 −A2

µ)d
2x, (8)

where the vector gauge potential A is given by

Aµ = − i

2
[ψ∗i ∂µψi − ψi∂µψ∗i ] ≡ − iψ†∂µψ. (9)

In the quantum context the potential A is called the
Berry connection, for a recent review see [13]. The re-
lated magnetic field for d = 2 is given by

Bz = εµν∂µAν = ∂xAy − ∂yAx. (10)
This field Bz corresponds to the Berry curvature. Un-
der the local gauge transformation of the complex field
ψ with a real function Λ(x) according to

ψi → ψ
′

i = e iΛ(x)ψi, (11)
the vector potential Aµ is transformed to

A′µ = Aµ(ψ) + ∂µΛ. (12)
Introducing the covariant derivative Dµ = ∂µ − iAµ one
can express H and the topological invariant as

H = 2J

∫
ddx(Dµψi)

∗(Dµψi),

Q =
i

2π

∫
d2xεµνDµAν (13)

Due to the gauge transformation the number of degrees
of freedom remains unchanged.

3. Skyrmion solutions in d = 2

A local distortion of the magnetization field n(x) is re-
lated to both, a change of the energy density h(x) and si-
multaneously to a change of the topological density q(x).
To reveal a relation between h(x) and q(x) let us con-
sider the inequality

R(x) = (∂µnα ∓ Γαµ )
2 ≥ 0. (14)

Using Eqs. (4), (5) the local condition follows
h(x)∓ Jq(x) ≥ 0. (15)

This relation is a local one indicating the above men-
tioned strong correlation between the local energy den-
sity and the local skyrmion density. In case of d = 2,
i.e. the magnetization field is in a plane, such as x–y
plane, we integrate the last relation finding the global
relationship H ≥ ±4πJQ. From here we conclude the
global condition for the minimal energy of the topologi-
cally protected states

Hmin = 4πJ |Q|. (16)
The last relation is realized for R(x) = 0 in Eq. (14):

∂µnα = ±Γαµ . (17)
Using the representation

ψ1 = e iθ1 cosϕ, ψ2 = e iθ2 sinϕ. (18)
Equation (17) is consistent with

2∂xϕ = ∓ sin 2ϕ∂yθ, 2∂yϕ = ± sin 2ϕ∂xθ. (19)
From here we conclude that the phase θ = θ1 − θ2 in the
realization in Eq. (18) fulfills ∇2θ = 0 with the solution

θ(x, y) =
∑
q

q tan−1
y − yq
x− xq

, q = ±1,±2 . . . (20)

The integer factor q, the winding number, appears be-
cause θ is an angle. Inserting this solution in Eq. (19)
one finds the solution for the azimuthal angle ϕ as

ϕ(x, y) = tan−1
∏
q

(rq
a

)∓q
. (21)

The solution given in Eqs. (20), (21) had been already ob-
tained in [2]. Here a is a lower cut-off, r2q = (x− xq)2 +
(y − yq)2 with the constants xq, yq which will be identi-
fied with position of the skyrmions. The solution reflects
the already mentioned topological degeneracy, that the
interchange y ↔ x is related to altering q ↔ −q After
gauge transformation Eq. (12) the Berry connection is

Aµ = (∂µθ) cos
2 ϕ. (22)

4. Solution with arbitrary winding number q

Let us illustrate the approach for an arbitrary q which
leads due to Eqs. (20) and (21) to

θ(x, y) = q tan−1
y

x
, ϕ(x, y) = tan−1

( r
a

)∓q
. (23)

Here r2 = x2 + y2 is the distance from the position
of the skyrmion, the core of which is situated at the
origin xq = yq = 0. In terms of polar coordinates
x = r cosα, y = r sinα in the coordinate space d = 2
the order parameter field is

nx(r, α) =
2(ra)q

r2q + a2q
cos(qα),

ny(r, α) = −
2(ra)q

r2q + a2q
sin(qα),

nz(r, α) = ±
r2q − a2q

r2q + a2q
→ ±1 for r →∞. (24)

As an example the magnetization field is depicted in
Fig. 1 for q = 1.

At the position of the origin of the skyrmion at x = y =
0 the magnetization field is n(0, 0) = (0, 0,−1) for the
upper sign in Eq. (17) and n(0, 0) = (0, 0,+1). As indi-
cated in Eq. (24) the spin flips to n(r →∞) = (0, 0,±1).
The topological density according to Eq. (2) reads

q(r) = ± q2a2qr2q−2

π(r2q + a2q)2
. (25)

The integration leads to Q =
∫
q(r)drrdα = ±q. The

skyrmion density q(x) and simultaneously the energy
density offers a pronounced peak around the origin which
is shown in Fig. 2.

In the same manner we find the gauge potential A
which gives rise to the Berry curvature.

Bz = ∂xAy − ∂yAx = ± 2q2(ar)2q

r2(r2q + a2q)2
. (26)

The field Bz ' q2r−2(q+1) is totally different from con-
ventional electrodynamics. The related current rotB = j̃
offers in polar coordinates a nonzero component in angle
direction
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Fig. 1. A single skyrmion with q = 1.

Fig. 2. Skyrmion density q(x, y) on the x–y plane with
winding number q = 1.

j̃α = ± 4q2(ar)2q

r3[r2q + a2q]3
(
(1 + q)r2q + (1− q)a2q

)
. (27)

This current is directly related to the topological current
introduced in Eq. (32). We have discussed a lot of dif-
ferent analytical solutions such as dipolar configuration
with q = ±1 or with both q = 1, different linear align-
ments, hexagonal configurations and other ones. Here we
present the quadrupolar order with 4 alternating wind-
ing numbers. Two skyrmions with q = 1 and distance 2a
are along the x-axis whereas two skyrmions with q = −1
along the y-axis and likewise distance 2a. The analytical
solution is

nx =
r4 − a4

r4 + a4
, ny = − 4a2xy

r4 + a4
,

nz = ±
2a2(y2 − x2)
r4 + a4

. (28)

The solution is shown in Fig. 3.
The B field is isotropic and simply given by Bz =
±8a4r2(r4 + a4)−2. The density q(x) is given by

q(x) =
16a4r2

(r4 + a4)2
, Q = 2. (29)

and is shown in Fig. 4.

Fig. 3. Quadrupolar configuration with alternating
winding numbers q = ±1.

Fig. 4. Skyrmion density q(x, y) on the x–y plane for
a quadrupolar configuration.

5. Dynamics

In this section we discuss the dynamical stability of the
skyrmion solution. In case the magnetization field fulfills
the Landau–Lifshitz–Gilbert equation

∂tn+ J∂νΠ ν = −Ω (n),withΩ (n) = +γ, ṅ× n. (30)
The continuity equation for the density u(x, t) = h(x, t)
or q(x, t) reads

∂u(x, t)

∂t
+ divj(u) = −Ω (u) (31)

with Ω (e) = Jαn · (∇n×∇ṅ), Ω (q) = Jα(∇ṅ×∇n)z.
The related currents are

j(q)µ = Jεαβ∂αnγ∂µβnγ .j
(h)
µ = Jεαβγ∂µn

αnβ∂ννnγ .

(32)
For arbitrary q the topological current is in polar coordi-
nates

j(q)(x) = 2J
4(ra)2qq2

[
(q + 1)r2q + (1− q)a2q

]
r3(r2q + a2q)3

eα,

(33)
which is up to a factor the above introduced fictitious
current j̃ (see Eq. (27)). Insofar the topological current
is directly related to the Berry field according to Eq. (27).
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The topological current is free of sources, i.e. ∇·j(q) = 0.
Due to the continuity equation Eq. (31) for zero damping
this fact reflects the dynamical stability of the skyrmion
solutions. In the same manner we get for the solution
with arbitrary q the relation ∂µΠ

α
µ = 0 which is accor-

dance with Eq. (30) without zero damping. Again the
dynamical stability of skyrmion configurations is guaran-
teed. The inclusion of damping effects will be discussed
elsewhere.

4. Conclusion

We have analyzed the mesoscopic non-linear sigma
model in order to find topologically protected inhomo-
geneous solutions for the magnetization field, the energy,
and the skyrmion density. The method can be extended
to get more refined skyrmion configurations. Moreover,
we have discussed the dynamical behavior of the solution.
The solutions presented are dynamically stable.
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