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The kinetic method based on the time-dependent Boltzmann transport equation is applied to the problem
of transient phenomena in open systems. For this purpose the transport equation is numerically solved and the
zeroth and first moments of the distribution function are determined as functions of time. The developed procedure
allows one to find the transient current flowing through the system and to determine the equilibrium limit of these
transport processes.
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1. Introduction

Reliable operation of electronic devices and the pos-
sibility of controlling their properties is one of the
crucial factors for their application. Therefore it re-
quires not only experimental and theoretical knowledge
of transport phenomena but also numerical simulations
which are a powerful research method used to investi-
gate physical phenomena in such systems. An inter-
esting class of processes which occur in electronic sys-
tems under the influence of a perturbation resulting
from the applied electric field are transient phenom-
ena. They represent a response of the electronic sys-
tem arising from switching on the bias voltage. In such
situations electrons are precipitated from equilibrium
which leads to the creation of a current pulse decaying
before the device reaches a stable state.

In this report we present results showing the tran-
sient response of an electronic device to a perturbation
due to the electric field. For this purpose we determine
the electronic distribution function by solving the time-
dependent Boltzmann transport equation with appropri-
ate initial and boundary conditions. We then calculate
the electronic current as the response of the considered
system to the bias voltage applied between contacts be-
fore reaching the steady state.

2. Model, theory and methods of calculations

We consider a model of a two-terminal electronic de-
vice which consists of two contacts and an active region
made of amorphous GaAs compounds. A schematic of
the device is shown in Fig. 1. We assume that the con-
tacts are characterized by the equilibrium distribution
functions of electrons with their own electrochemical po-
tential and temperature, while the active region of the
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Fig. 1. Schematic view of the two-terminal electronic
device. Active region of the system is sandwiched be-
tween the contacts.

system is structurally defected and we treat it as a disor-
dered system where the scattering processes are described
by the relaxation time [1].

Transport properties of the considered system can
be derived from the non-equilibrium distribution func-
tion f(x, p, t) for the carriers which satisfies the time-
dependent Boltzmann transport equation in the form

∂

∂t
f(x, p, t) + v(p)

∂

∂x
f(x, p, t) =

−1

τ

[
f(x, p, t)− f0(p)

]
, (1)

where τ is the relaxation time which characterizes the
elastic scattering processes of carriers, v(p) = p/m∗ is
the velocity of conduction electrons which stems from
the quadratic dispersion relation E(p) = p2/2m∗ with
the effective mass m∗, and f0(p) is the equilibrium dis-
tribution function. The kinetic Eq. (1) is supplemented
by the inflow boundary condition in the form [2]:

f(x = 0, p)

∣∣∣∣
p>0

= fL(E(p)),

f(x = L, p)

∣∣∣∣
p<0

= fR(E(p)), (2)

where fL(R)(E(p)) are the supply functions for the
left (L) and right (R) contacts [3]:
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fL(R)(E(p)) =
m∗kBT

π~2

× ln

(
exp

(
−
E(p)− µ

L(R)
F

kBT

)
+ 1

)
, (3)

where kB is the Boltzmann constant, T is the temper-
ature, and µ

L(R)
F is the electrochemical potential in the

left (right) contact. The difference between the electro-
chemical potentials of the left and right reservoirs cor-
responds to the applied bias voltage between them, i.e.,
eVB = µL

F−µR
F . In turn, the initial condition for Eq. (1) is

given by a Gaussian function centred in the phase space
around the point (x0, p0) at time t = 0 and the initial
half-widths δx and δp. Therefore, the form of the initial
condition is given by the formula

f(x, p, 0) = A exp

(
− 1

2δ2p
(p− p0)

2− 1

2δ2x
(x− x0)

2

)
, (4)

where A is the amplitude of the Gaussian determined ac-
cording to the normalization condition in the form∫

dxdpf(x, p) =
N

D
, (5)

where D is the cross section, and N represents the num-
ber of electrons injected to the active region of the elec-
tronic device from the left contact. All numerical calcula-
tions are performed on a computational gridNx×Nk with
Nx = 100 mesh points for the position x and Nk = 100
for the wave vector k. This corresponds to the following
discretization of the phase space:{

xi = i∆x, i = 0, 1, . . . , Nx−1,

kj = ∆k(j − 1
2 (Nk − 1)), j = 0, 1, . . . , Nk−1,

(6)

where ∆x = L/Nx and ∆k = 2kmax/Nk.

The distribution function f(x, k, t) in the discrete
form is denoted by fi,j,l. In turn, the discrete ver-
sion of Eq. (1), developed for the numerical scheme
based on the Crank–Nicholson method, can be written
in the form

1

∆t
(fi,j,l − fi,j,l−1) =

1

2
(K̂ + Ŝ)[fi,j,l + fi,j,l−1], (7)

where K̂ is the diffusion term approximated using the
second order finite difference method,

K̂[fi,j,l] =
~kj
m∗

dfi,j,l
dx

≈ ~kj
m∗∆x

{
fi,j,l − fi−1,j,l, k > 0,

−fi,j,l + fi+1,j,l, k < 0,
(8)

while the scattering term Ŝ is given by

Ŝ[fi,j,l] =
fi,j,l − f0j

τ
. (9)

The calculations are performed with respect to the
Courant–Friedrichs–Lewy condition for convergence, i.e.,
∆tvmax/∆x ≤ Cmax, where Cmax is the Courant number
which for algorithmic stability cannot be larger than one
and therefore ∆t ≤ ∆xm

∗/pmax.

We numerically solve the Boltzmann transport Eq. (1)
with the conditions given by Eqs. (2) and (4) for a
fixed bias voltage and relaxation time using the discrete
form given by Eq. (7). As a result, the time-dependent
distribution function f(x, p, t;VB , τ) is determined and
then the current density is calculated according
to the formula

j(x, t;VB , τ) =
e

2π

∫
dpv(p)f(x, p, t;VB , τ), (10)

which allows us to calculate the time-dependent current
for the fixed bias voltage and relaxation time,

I(t;VB , τ) =
1

L

∫
dx j(x, t;VB , τ), (11)

where L is the length of the active region of the de-
vice. It is assumed that the stationary electronic current
IS(VB , τ) is reached after time tS , if the following condi-
tion [4] is fulfilled,

dI(t;VB , τ)

dt

∣∣∣∣
t≥tS

= 0. (12)

In the presented calculations the condition (12) is checked
using the third order backward finite difference method
with the machine-precision accuracy.

3. Results and discussion

The model of the electronic device presented in Sect. 2
is used to find the transient current through the system
as a response to the bias voltage applied between the
contacts. The numerical calculations are performed for a
system having length L = 200 nm and at a temperature
T = 77 K. Additionally, we assume that the effective
mass of the carriers is m∗/m0 = 0.067 and the relaxation
time τ is equal to 10−12 s. Our calculations proved that
the transient response of the system manifests itself by
the current pulse created after switching on the device,
as it is shown in Fig. 2. This pulse decays after some
time and the current achieves a stationary form, i.e., it
is independent of time.

Fig. 2. The transient current I as a function of time
for different values of the bias voltage VB and for a fixed
value of the relaxation time τ = 10−12 s.
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Fig. 3. The distribution function f(x, p) for the bias voltage VB = 0.1 V at (a) t = 0, (b) t = 0.15 ps, (c) t = 0.3 ps
and (d) after reaching the steady state.

Figure 3 displays the phase-space snapshots of the time
evolution of the non-equilibrium distribution function for
the bias voltage VB = 0.1 V at certain time instants. At
t = 0 carriers injected to the active region of the sys-
tem form the Gaussian located at x0 = 27.56 nm with
δx = 9.19 nm and p = 0.038 a.u. with δp = 0.0057 a.u.
(where momentum is given in the atomic units, i.e., as-
suming ~ = e = m0 = 1), as it is presented in Fig. 3a.
Figure 3b,c shows the motion of the state from the left
to the right contact under influence of the bias voltage
in the transient regime of the current characteristics.

Fig. 4. The steady-state current Is and the time tS
required to reach the steady state as functions of VB .

In both these cases, we can observe the penetration of
carriers into the active region from the contacts as it is
expected. Finally, in Fig. 3d, we can observe the station-
ary form of the distribution function which is responsible
for the stationary current.

We also determined the time tc after which the elec-
tronic current reaches the steady state based on the con-
dition (12). It allows us to obtain the current-voltage
characteristics IS–Vb displayed in Fig. 4, which also
shows the time tS required to reach the steady state.

4. Conclusions

In this report, we presented an algorithm for investi-
gating transient phenomena in electronic devices within
the kinetic theory based on the Boltzmann transport
equation. We have applied the algorithm to investigate
the transient response of a two-terminal electronic de-
vice to a bias voltage applied between contacts. We have
shown that a current pulse is formed after switching on
the device, and determined the characteristic time which
can be treated as a measure of the device “inertia” to
the electric field before the current achieves the steady
state. Simultaneously we have obtained the current–
voltage characteristics for the considered system, which
has been possible owing to the precise determination of
the steady state current.
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