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The AC Conductivity and the Jonscher Exponent
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The one-dimensional chain of rods equipped with the Grotthuss mechanism is considered as the model of
proton diffusion. The AC protonic conductivity is calculated and the Jonscher exponent is found. It is established
that the nature of conduction is of purely Debye’s type.
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1. Introduction

The kinetic Monte Carlo (KMC) method has proven
its predictive power in applications to the dc conductiv-
ity of proton conductors [1–3]. Models adopting KMC
effectively take into account a diverse spectrum of fac-
tors responsible for proton migration like the shape of
hydrogen bond potential, lattice vibration, or thermal
expansion of the medium and thus may support experi-
ments with the proper interpretation of the data as well
as a prediction of new phenomena. In spite of its ben-
efits, very few applications of KMC to AC conductivity
may be found in the literature [4]. The reason is: a
straightforward calculation of time evolution in the case
of sinusoidally varying external electric field applied to a
sample of proton conductor consumes a lot of CPU time.
Moreover, as the desirable quantity describing the electri-
cal properties of the system is conductivity as a function
of frequency, σ(ω), one needs to run the KMC calcula-
tion many times to get the result. A possible solution
to this difficulty is the use of the Kubo linear response
theory which connects σ(ω) with the diffusive properties
of the system. In this paper we want to present diffi-
culties which one has to overcome to effectively benefit
from the Kubo formula doing the KMC calculation. The
response function is calculated in the model previously
studied, where a free flow of protons is limited only by
the Coulomb interaction which acts on protons occupying
the minima of the same hydrogen bond.

2. AC conductivity

The model consists of one-dimensional chain of rotat-
ing rods with ends occupied by protons. Protons can also
migrate by hopping from one rod to the nearest one and
the open boundary conditions are imposed. The physi-
cal analogues are heterocyclic based polymers. Schemat-
ically the model is presented in Fig. 1.
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Fig. 1. Protons (solid dots) can hop to the neighbour
rod if there is a vacancy (empty dot). Rods with or
without protons can rotate. Rotations and hoppings
are provided by the Grotthuss mechanism. If there is
already a proton in one minimum of the hydrogen bond
(wavy line) then it is energetically unfavourable for an-
other proton to go to the second minimum.

The Kubo formula for the electric susceptibility in the
case of discrete KMC movements reads as

χ(t) =
θ(t)

kBT
C(t), (1)

C(t) = lim
∆t→∞

1

L2∆t

∑
k≥l

∆xk∆xl

∣∣∣
t=(k−l)δt

, (2)

where θ(t) is the Heaviside step function, C(t) is the auto-
correlation function of the microscopic protonic current,
L is the chain’s length and ∆xk is a change of proton
position in the k movement. In the KMC simulation
the time evolution is discrete with time steps which are
not constant but drawn in every step. Thus, the condi-
tion t = (k − l)δt in (2) has to be understood that for
t ∈ [(k− l− 1)δt, (k− l)δt] the time t is set to (k− l)δt,
where δt is the average KMC time step.

The Fourier transform of χ(t),

χ(ω) =

∞∫
o

χ(t)e iωtdt, (3)

can be easily related to the conductivity
χ(ω) = χ′(ω)− iχ′′(ω), (4)

σ(ω) = σ′(ω) + iσ′′(ω), (5)

σ′(ω) = ε0ωχ
′′(ω), (6)

σ′′(ω) = ε0ω(1 + χ′(ω)), (7)
where ε0 is the permittivity of free space.
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When using the Kubo formula there are two critical
features governing the quality of χ(ω). The first is the au-
tocorrelation function. The KMC calculation introduces
a time scale equal to the average time granulation which
is governed by the system properties, i.e. the system size.
Going below this threshold is possible but requires more
extensive calculation. Thus, it is natural to adopt this
time scale as the minimal time step. This means that
our knowledge of C(t) is incomplete and χ(ω) can only
be approximated. The second problem is a proper calcu-
lation of the Fourier transform. The difficulties here arise
from the high frequencies which implies a highly oscillat-
ing function to be integrated. A straightforward applica-
tion of a discretization costs a lot of calculational time to
get a desire accuracy. Other procedures of dealing with
highly oscillating integrals like Filon [5] is not improving
the calculation time noticeably. More effective methods
like Levin method [6] cannot be used as they need the
analytical expression of the integrand. Some authors [4]
are trying to avoid the problem with the accuracy of
the Fourier transform by using fits to the behaviour of
equivalent circuit model, but this requires in advance the
knowledge about the nature of protonic current in the
analysed material. It was found that a very effective way
of proceeding is the use of the Gauss–Laguerre quadra-
tures. Within this method one needs two to three or-
ders of magnitude less number of points than in cases
mentioned above. The abscissas and weights for N -point
Gauss–Laguerre quadrature with large N , 103 and more,
can be calculated for example within Mathematica pro-
gramme with a great precision.

The efficient way of calculating the Fourier transform
(3) is especially important when the interest is focused on
high frequency behaviour of σ(ω). The Jonscher power
law [7] conjectures that σ(ω) behaves like ωn in a wide
range of accordingly large frequencies. Thus, to calcu-
late the Jonscher exponent n a proper dealing with high
frequency is indispensable.

Figure 2 shows the result of KMC calculations for χ′(ω)
and χ′′(ω). Figure 2 was obtained for the value of the
Coulomb interaction, VCoul, between protons when they
are at minima of the same hydrogen bond [1] equal to
0.05 eV, but qualitatively the same picture is obtained
for other values (0–0.2 eV). According to (6) the Jon-
scher exponent is equal to zero (1 + the slope of χ′′(ω)
at large ω).

The behaviour shown in Fig. 2 and n = 0 is characteris-
tic for non-interacting carriers. It is seemingly surprising
that the Coulomb interaction in the form built into the
model cannot be considered as the nearest neighbours
interaction. To get the Jonscher exponent n ∼ 0.3–0.4,
characteristic for the nearest neighbours interaction [8],
the interaction cannot be limited to isolated events in
time. The Coulomb interaction in the form presented in
the model is sufficient to explain the macroscopic prop-
erties [1–3] but it cannot go beyond a free evolution in
the case of AC conductivity which is subjected to micro-
scopic phenomena.

Fig. 2. The shape of χ(ω) at log–log scale together
with the fit to χ′(ω) at large ω. The dashed line rep-
resents the fit at large ω, its slope is approximately −1
which means that the Jonscher exponent is equal to 0.
The plot was obtained for VCoul = 0.05 eV but the same
behaviour were observed for all examined values of the
Coulomb interaction, i.e. thought χ(ω) is changed, the
slope remains equal to −1.

3. Conclusions

The AC conductivity found in the presented model
reveals the characteristic behaviour for non-interacting
carriers [8]. The Coulomb interaction embedded into the
model plays a role of geometrical blocking rather than
a nearest neighbours interaction. As the purely Debye
behaviour can be found analytically, the model is a good
testing ground for numerical calculations of the answer
function (susceptibility) or conductivity. Although, it is
possible to read out different electrical properties from
the model, it has to be extended by proton interaction,
e.g. by taking into account the internal polarizability, to
be able to reproduce a more realistic AC behaviour and
to get non-zero value of the Jonscher exponent.
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