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An infrared laser beam has been used to heat a round plate of thermal insulating foam with small pores. The
temperature distribution on the opposite surface of the foam has been measured with a thermal imaging camera,
as a function of time. The constant laser heating has been realized centrally on the surface. The temperature
distribution measurement was then continued during the self-cooling of the sample. We present a method for
evaluating thermal conductivity of the insulating foam that is based on two elements: the finite difference method
and the least squares approximation.
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1. Introduction

From the year of its invention [1], the laser flash
method (LFM) for measuring thermal diffusivity has con-
sisted in heating a sample from the front side and detect-
ing the time-dependent temperature from the back side.
The initial perfect conditions, i.e. homogeneous and one-
dimensional material, homogeneous input energy distri-
bution on the front, an infinitely short pulse, and no
heat losses, were soon enriched by radiation and con-
vection losses on the front [2], side heat losses together
with transient heat transfer in the sample, and finite-
pulse effects [3] (with a correction [4]), [5, 6]. The effects
of nonuniform surface heating were taken into consider-
ation in [7]. The actual dimensions of the heat pulse
on the front face, and of the temperature sensing area
on the back face of the sample were taken into account
in [8]. Further improvements of the assumptions were
made in [9], where additionally higher-order solutions of
the analytical description were applied together with the
nonlinear regression routine allowing fitting experimental
data to yield thermal diffusivity values with high accu-
racy. Other authors established analytical solutions by
means of the Laplace transform [10] or the Green func-
tions [11]. An application of the gray-body theory for
thermal radiation inside a liquid sample at high temper-
atures [12] was another achievement. The same authors
solved their model equations numerically using a finite-
difference scheme.

In the presence of so many different factors that in-
fluence the heat-conduction process in a sample tested
and that are difficult to describe analytically, we decided
to take into account those factors by means of the finite-
difference method (FDM). The method has been oriented
towards testing the thermal diffusivity and conductivity
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of thermal insulating foam with small pores. FDM allows
to take into consideration, except many of the above-
mentioned factors, also convection and radiation losses
with varying temperature on the surface of the sample.
We applied the similar approach to investigate the ther-
mal conductivity of a small amount of liquid [13].

2. Method description

An infrared laser beam has been used to heat the cen-
ter of a round sample of thermal insulating foam, as it
shown in Fig. 1. The sample has been covered on its
center by a small metal plate with black oxidation and
roughly the same diameter as the laser beam. Irradiat-
ing the sample from the top has helped avoiding heat-
ing the sample parts adjacent to the plate by a convec-

Fig. 1. Diagram of the measuring system.
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Fig. 2. Three measurement results, for t=74, 300, 358 s.

tion. The temperature distribution over the sample has
been measured as a function of time at the bottom of
the sample by an infrared camera. The entire measuring
device has been placed in a temperature stabilized zone.
The laser heating was realized constantly from the begin-
ning until the temperature distribution measured by the
camera reached approximately a stationary state. For
the sample investigated, the heating time defined in this
way has turned out to be equal to about 300 s, and we
have assumed exactly such amount of time for the con-
stant heating. The temperature distribution measure-
ment was then continued for the same time during the
self-cooling of the sample. The measurement results are
presented in Fig. 2.

The heat flow through the sample as well as the sur-
rounding space has been modeled by the finite-difference
method (FDM) to calculate the temperature distribution
at the bottom vs. time. The following FDM assumptions
has been taken for granted:

• the following input parameters are known:

– the constant ambient temperature T0, that is
also the initial temperature of the whole mea-
suring system

– the density ρ and specific heat c, of the
anisotropic sample tested

– the density ρc, specific heat cc, thermal con-
ductivity λc, and thermal emissivity ε (equal
to 1), of the cover plate

– the time th of constant heating
– the cylindrical sample diameter and height, D
and H, respectively

– the cover plate diameter and height, Dc and
Hc, respectively

• the following output parameters are initially as-
sumed, though they are changed by the fitting
method to achieve finally the values sought:

– the heat flux q0 of the laser radiation, in
W/m2

– the laminar-convection conductivity h for a
horizontal sample plate

– the thermal conductivity λ of the sample in-
vestigated (the main parameter sought)

• the cylindrical foam plate is divided into coaxial
rigs with the various radius r, the constant thick-
ness ∆r, and height ∆z

The heat equation in cylindrical coordinates
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is transformed by the finite-difference method to the fol-
lowing equation for a thin coaxial ring element of the
sample with radius r:

T (t+∆t) = (2)

T (t)+
λ∆t

ρc∆z2
[T (z + ∆z)− 2T (z) + T (z −∆z)]

+
2λ∆t

ρcr∆r
[T (r + ∆r)− T (r −∆r)]

+
λ∆t

ρc∆r2
[T (r + ∆r)− 2T (r) + T (r −∆r)]

+
∆t

ρc∆z
q(t)− h∆t

ρc∆z
[T − To]−εσ∆t

ρc∆z

[
T 4 − To4

]
,

where z is the down-sense vertical coordinate of the thin
ring, q(t) is the time-dependent heat flux, q(t) = qo 6= 0
for 0 ≤ t ≤ th, σ is the Stefan–Boltzmann constant,
ε is the thermal emissivity of the sample surface. For
the purpose of simplification, the following denotations
of temperature dependence upon coordinates r, z, t are
identical: T (r, z, t) ≡ T (r) ≡ T (z) ≡ T (t) ≡ T . The first
term in the lowest line of Eq. (2), that corresponds to
laser heating, is realized only for the thin rings located
on the black cover plate. The last two terms in the lowest
line of Eq. (2), that correspond to convection and radia-
tion, are realized for the thin rings located on the surface
of the sample.

The radiation term in Eq. (2), proportional to (T 4 −
T 4
0 ), can be extended in the Taylor series near T = T0

with an accuracy of the first power, i.e. T 4 − T 4
0 ≈

4T 3
0 (T−T0), because the sample temperature differs from

the ambient one by a dozen or so degrees centigrade at
the most, as it turns out from the experiment. Thus, the
two terms in Eq. (2), relating to convection and radia-
tion, can be joined, which reduces three unknown param-
eters h, ε, σ to the effective laminar-convection conduc-
tivity h′ = h + 4T 3

0 εσ in the least squares fitting (LSF).
Without this reduction, LSF would be divergent since
the parameters h, ε, and σ, that are varied by LSF, have
the similar logical influence upon the temperature calcu-
lated, that is they all stand at the terms that are pro-
portional to the difference between sample and ambient
temperatures.

The temperature on the opposite surface of the foam
sample, Tb(r, t) = T (r, z = H, t), vs. radius and time,
evaluated from the FDM, has been used as a fitting non-
linear function in LSF method to get the foam thermal
conductivity, λ, among other fitting parameters, i.e. the
heat flux q of the laser radiation and the effective laminar-
convection conductivity h′. The fitting function Tb(r, t) is
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defined in the two-dimensional domain, so that the LSF
method fits a curved surface to the three-dimensional
measuring points. The time range for temperature mea-
surement must be wide enough to include the time of
self-cooling so that the measuring curve features more
characteristics, as it is shown in Fig. 3. The partial
derivatives, ∂Tb/∂λ, ∂Tb/∂q, and ∂Tb/∂h, needed dur-
ing LSF calculations for each time and for each radius,
have been evaluated numerically, which requires double
computing the whole finite-difference procedure for each
derivative, i.e. for two close values of λ, q or h′.

Fig. 3. Exemplary results T (r) for three times t =
74, 300, 358 s, and T (t) for three radii r = 0, 5,
10 mm. Measurement results are denoted by points,
and FDM-LSF results are denoted by lines. The heat-
ing time th = 300 s. The number of measuring points
n = 125× 40 = 5000.

The thermal diffusivity of the foam investigated, i.e.
boron-containing non-flammable polyurethane foam [14],
has been estimated by the fitting procedure at α =
(0.4101 ± 0.0022) × 10−6 m2/s. The thermal conduc-
tivity together with its uncertainty λ ± u0(λ) can be

computed by the formula λ = αρc and equals λ =
(0.06238 ± 0.00033) W/(m K). The uncertainty u0(α),
and hence u0(λ), has been calculated by the fitting proce-
dure from the measuring-points scattering, and from the
numerical model ability to adapt to the measuring points.
Since the input parameters to the joined FDM and LSF
methods, such as sample or cover diameter, thickness,
density, or specific heat, are measured with finite accu-
racy, the uncertainty u0(λ) must be enlarged under the
law of uncertainty propagation to the following expres-
sion for the total uncertainty u(λ):
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, (3)

where ai and u(ai) are the i-th input parameter and its
uncertainty, adequately, υi is the i-th input parameter
relative uncertainty, ki is the coefficient of influence of
relative uncertainty of the i-th parameter on the total un-
certainty thermal conductivity. The partial derivatives
in Eq. (3) have been calculated numerically by repeat-
ing the whole FDM-LSF procedure for two close values
of each input parameter. The ki coefficients are shown
in Table I.

TABLE I

The relative uncertainty of thermal conductivity υ0 and
the coefficients ki for some input parameters

υ0 D H Dc Hc T0 th

0.0053 0.033 0.083 0.0062 0.023 15.4 1.97

The coefficient k, definition of which follows from
Eq. (3), expresses the character of influence of the given
input parameter relative uncertainty on the output pa-
rameter relative uncertainty u(λ) in the FDM-LSF pro-
cedure used. For example, if the output parameter de-
pends on the m-th power of the input one, then k = m.
Since the coefficients are dimensionless, the character
of the above influence is size independent, in a certain
range. Therefore, the values of the coefficients obtained
here show the quality of the method itself and may be
used with different values of the input parameters or their
uncertainties.

The ki values, shown in Table I, together with the
specific values of the input parameters and their uncer-
tainties, shown in Table II, have been used to calculate
by Eq. (3) the thermal-conductivity total uncertainty
u(λ) = 0.00047 W/(m K).
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TABLE IIThe values of the input parameters and
their uncertainties

D [mm] H [mm] Dc [mm] Hc [mm] T0 [K] th [s]
60.0 10.0 4.0 1.0 298.5 300
0.2 0.2 0.05 0.05 0.1 0.1

3. Conclusions

The thermal conductivity of the insulating foam can
be calculated by the joined methods of finite differences
and least squares. The thermal-conductivity relative un-
certainty υ0, achieved during fitting the numerical heat-
transfer model to experimental data, shows the quality of
the model itself. Such accuracy is achieved when every in-
put parameter is measured with relative uncertainty that
is a few times less than υ0/ki. Otherwise, the thermal-
conductivity uncertainty increases. After taking into ac-
count all input uncertainties, the thermal conductivity
takes on the value λ = (0.06238 ± 0.00047) W/(m K).
Other results of the model are the heat flux q0 = (3.657±
0.015) mW/mm2, and the effective laminar-convection
conductivity h′ = (4.807± 0.036) W/(m2 K).
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