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We demonstrate the method of creating blocks of Hamiltonian matrices for Heisenberg rings with N nodes
and r = 2 overturned spins, depending on total quasimomentum k. Initial problem of dimension

(
N
2

)
reduces,

approximately, N -tuply, depending on N and k numbers. We consider block Hamiltonians using a particular basis,
called wavelet basis. In this basis, these blocks take three-diagonal form.
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1. Introduction

In 1931 Hans Bethe introduced his famous ansatz con-
cerning the diagonalization of the Heisenberg Hamilto-
nian of a ring consisting of N nodes [1]. However, Bethe
ansatz equations has turned out to be a very compli-
cated set of nonlinear algebraic equations. To solve such a
set one applies sophisticated algebraic, and combinatoric
methods, including spectral parameters, rigged string
configurations, etc. [2–7]. As matrix elements of the
Heisenberg Hamiltonian are of the arithmetic form [8],
solutions of the eigenproblem reveal the Galois symme-
try [9–11].

It is well known that sectors with a given number of
magnons are invariant with respect to the Heisenberg
Hamiltonian Ĥ. Moreover, the subspaces with a given
wave number k are also Ĥ-invariant. The Hilbert space
H of all quantum states can be decomposed, with respect
to r and k, in the following way:

H =
⊕
r,k

Hr,k. (1)

This decomposition is compatible with the decomposi-
tion of the Hamiltonian Ĥ into blocks

H =
⊕

Hr,k. (2)

We consider here the two-magnon sector (r = 2) for the
Heisenberg ring with N nodes. Geometry of a ring, as
well as the Heisenberg Hamiltonian, displays the symme-
try of the cyclic group CN , isomorphic with ZN group,
and even richer DN group. In this paper we focus on the
CN subgroup, as it enables to describe the basis of orbits
and the Fourier transform from the basis of orbits to the
basis of wavelets.
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The classical configuration space for the system being
discussed has been considered e.g. in [12]. In this paper
we deal with the space of quantum states. In particular,
we present matrices of block Hamiltonians H2,k with re-
spect to k and N , including their parity, in the so-called
wavelet basis [10, 13, 14]. Especially, the eigenproblem of
the system being considered has been studied in [13] by
means of the Chebyshev polynomials. The paper is or-
ganized as follows. First, we introduce basis of positions,
orbits, and wavelets as well. Next, we consider the action
of the Hamiltonian on basis vectors of the auxiliary basis
of orbits, and, eventually, in the basis of wavelets. In
this way we get consecutive columns of the block Hamil-
tonian matrices. As a result of such a procedure one gets
Hamiltonian matrices of the three-diagonal form.

2. Bases

2.1. Basis of positions

A magnetic configuration is described by positions of
nodes with overturned spins. In particular, to define
a magnetic configuration with r spin deviations, one
has to give an r-element set of all positions of devia-
tions. Any magnetic configuration for two spin deviations
is of the form
{j1, j2} : j1, j2 ∈ ZN , j1 6= j2. (3)

Notice that the brace in (3) denotes a set, and not a se-
quence, so that the order within a configuration {j1, j2}
is irrelevant.

With configurations described in (3) there is a related
basis of positions, indexed by

j = |{j1, j2}〉, 1 ≤ j1 < j2 ≤ N, (4)
which, by definition, is an orthonormal basis, so that
it determines explicitly the scalar product in this space.
The range of j1, j2 in (4) is the so-called Yang–Baxter
condition. It is worth to observe that sets {j1, j2} in (3)
are doubly repeating, while condition (4) eliminates this
problem.
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Remark. It is worth to observe that the basis of posi-
tions (4) in quantum information theory is called compu-
tational basis (for the case of two spin deviations). Nat-
urally, analogous nomenclature takes place for the other
case of number of spin deviations.

2.2. Basis of orbits

Elements of basis of orbits are labeled by one of the
number of nodes, and by the vector of relative positions
of nodes, so that in the case of two magnons it can be
introduced as

|j, tα〉 = |{j, j + α}〉, α = 1, 2, . . . ,

[
N

2

]
, (5)

where tα = (α,N − α) is the vector of the relative con-
figuration, which defines the orbit, with α indicating the
distance between two spin deviations in a configuration.
In (5), j ∈ ZN , except of even N and α = N

2 , when
j = 1, . . . , N2 , which results from the fact that the orbit
in this particular case is rarefied. Note that the limita-
tion of variability of j for α = N

2 , and even N , similar
to the case of the Yang–Baxter condition, is imposed to
avoid the repetition of basis vectors. The basis of orbits
is a permuted basis of positions (cf. (5)) — all basis vec-
tors are the same; the only difference arises in the way
of numeration. Such a change enables to numerate basis
vectors according to orbits. In detail, tα is an invariant
of the action of the group of translation and precisely
determines the orbit (tα in (5) corresponds to the orbit
and j is a number of element in the orbit). By acting
the group of translation on |j, tα〉 vectors there is only
a change of the number of an element in an orbit, while
tα remains unchanged, which highlights the concept of
the basis of orbits. However, by acting on the basis of
positions there is a simultaneous change of j1 and j2. As
it results from (5), |j, tα〉 shows that the transition from
one basis to the another is a permutation.

2.3. Basis of wavelets

Basis of wavelets can be formed by a single, discrete
Fourier transform with respect to the first index of the
basis of orbits j:

|tα, k〉 =
1√
N

N∑
j=1

ω−jk|j, tα〉, for α 6=
N

2
, (6)

and

|tα, k〉 =

√
2

N

N
2∑
j=1

ω−jk|j, tα〉,

for α =
N

2
, and N even, only for k even, (7)

with admissible quasimomenta k from the range

k = 0,±1,±2, . . . ,

{
±(N/2− 1), N/2 for N even,
±(N − 1)/2 for N odd.

(8)

The matter of different coefficients and summation range
in (7) is related with a rarefied orbit in comparison with
a regular orbit in (6).

Remark. It is a very important fact that for the case
of k odd, α = N

2 and N even, tα and k do not fit within
the range of indices of the basis of wavelets.

3. The action of blocks of Hamiltonians
in different bases for two magnons

A general form of the Hamiltonian for r = 2 spin de-
viations in the space H can be introduced as

Ĥ|j〉 =
∑
j′

(|j′〉 − |j〉) , (9)

where summation runs over the nearest neighbour con-
figurations j′ of j.

It is worth to notice that the choice of the sign of
the Hamiltonian corresponds to the case of the antiferro-
magnetic ring. The change of the sign leads to the ferro-
magnetic model.

3.1. The Hamiltonian in the basis of positions

In details, in the case of the basis of positions, the
Hamiltonian can be introduced in the following way:

Ĥ|{j, j + 1}〉 = |{j − 1, j + 1}〉+ |{j, j + 2}〉

−2|{j, j + 1}〉, (10)

Ĥ|{j, j′}〉 = |{j − 1, j′}〉+ |{j + 1, j′}〉+ |{j, j′ − 1}〉

+|{j, j′ + 1}〉 − 4|{j, j + 1}〉, for d(j, j′) > 1. (11)

3.2. The Hamiltonian in the basis of orbits

Now, recall that the basis of orbits is the permuted
basis of positions, depending on the distance α and the
parity of N , hence, the Hamiltonian operates on vectors
of this basis in the following way:

• α = 1

Ĥ|j, tα〉 = |j − 1, tα+1〉+ |j, tα+1〉 − 2|j, tα〉, (12)

• α = 2, 3, . . . , [N2 ]−1 for N odd; α = 2, 3, . . . , N2 −2
for N even

Ĥ|j, tα〉 = |j − 1, tα+1〉+ |j + 1, tα−1〉

+|j, tα−1〉+ |j, tα+1〉 − 4|j, tα〉, (13)

• α = [N2 ] for N odd

Ĥ|j, tα〉 = |j + tα, tα〉+ |j + tα+1, tα〉

+|j, tα−1〉+ |j + 1, tα−1〉 − 4|j, tα〉, (14)

• α = N
2 for N even

Ĥ|j, tα〉 = |j + tα, tα−1〉+ |j + 1, tα−1〉

+ |j, tα−1〉+ |j + tα+1, tα−1〉 − 4 |j, tα〉 . (15)
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3.3. The Hamiltonian in the basis of wavelets
Now, keeping in mind that the basis of wavelets is a

single Fourier transform with respect to j, within a one
orbit, taking into account the distance α and the parity
of N and k (if necessary, shifting the summand variable j
in (12)–(15)), the action of the Hamiltonian in this basis
can be presented as

• α = 1

Ĥ|tα, k〉 = (1 + ω−k)|tα+1, k〉 − 2|tα, k〉, (16)

• α = 2, 3, . . . , [N2 ]−1 for N odd; α = 2, 3, . . . , N2 −2
for N even

Ĥ|tα, k〉 =
(
1 + ωk

)
|tα−1, k〉

+
(
1 + ω−k

)
|tα+1, k〉 − 4|tα, k〉, (17)

• α = [N2 ] for N odd

Ĥ|tα, k〉 =
(
1 + ωk

)
|tα−1, k〉

+
(
ωktα + ω(k+1)tα

)
|tα, k〉 − 4|tα, k〉, (18)

• α = N
2 − 1 for N even, k even

Ĥ|tα, k〉 =
(
1 + ωk

)
|tα−1, k〉

+
√

2
(
1 + ω−k

)
|tα+1, k〉 − 4|tα, k〉 (19)

• α = N
2 for N even, k even

Ĥ|tα, k〉 =

√
2

N

N
2∑
j=1

ω−kjH|j, tα〉 =

√
2
(
ωk + 1

)
|tα−1, k〉 − 4|tα, k〉 (20)

• α = N
2 − 1 for N even, k odd

Ĥ|tα, k〉 =
(
1 + ωk

)
|tα−1, k〉 − 4|tα, k〉. (21)

4. Hamiltonian matrices

As a result of considerations presented above, we may
introduce Hamiltonian matrices depending on the parity
of N and k. Here we put c = 1 + ωk, and c∗ = 1 + ω−k.

• N odd

H =



−2 ck 0 . . . . . . . . . . . .

c∗k −4 ck . . . . . . . . . . . .

0 c∗k −4 . . . . . . . . . . . .

0 0 c∗k
. . . . . . . . . . . .

...
...

...
...

. . . ck 0
...

...
...

... . . . −4 ck
...

...
...

... . . . c∗k dk − 4


[N2 ]×[N2 ]

(22)

where dk = (−1)k
(
ω
k
2 + ω−

k
2

)
.

• N even, k even

H =



−2 ck 0 . . . . . . . . . . . .

c∗k −4 ck . . . . . . . . . . . .

0 c∗k −4 . . . . . . . . . . . .

0 0 c∗k
. . . . . . . . . . . .

...
...

...
...

. . . ck 0
...

...
...

...
... −4

√
2ck

...
...

...
...

...
√

2c∗k −4


N
2 ×

N
2

(23)

• N even, k odd

H =



−2 ck 0 . . . . . . . . . . . .

c∗k −4 ck . . . . . . . . . . . .

0 c∗k −4 . . . . . . . . . . . .

0 0 c∗k
. . . . . . . . . . . .

...
...

...
...

. . . ck 0
...

...
...

...
... −4 ck

...
...

...
...

... c∗k −4


(N2 −1)×(N2 −1).

(24)

5. The eigenproblem
and Chebyshev polynomials

Hamiltonian blocks for all cases (22)–(24) are given by
means of three-diagonal matrices, and all diagonal ele-
ments, except of the first and at most the last one, are
equaled to −4. It suggests that for more convenient form
of algebraic expressions for characteristic polynomials of
block Hamiltonians, we shift all energy levels in these sec-
tors by 4. Equivalently, we consider shifted Hamiltonian
in the whole 2-magnon space

Ĥ ′ = Ĥ + 4Î , Ĥ ′|j〉 =
∑
j′

(|j′〉 − |j〉) + 4|j〉, (25)

with Î being an identity operator. The summand 4Î in
(25) just shifts the standard energy level, but does not
influence on a value of gaps between energy levels. In-
deed, after such a shift, most of elements on the main
diagonal of all Hamiltonian blocks vanishes.

In the theory of three-diagonal matrices, it is a well
known fact that their determinants are expressed by
means of the Chebyshev polynomials. The application
of this theory gives the following form of the characteris-
tic polynomial of the block Hamiltonians [13]:

P kN (x) = hMΦkN,M (−u) + 2hM−1ΦkN,M−1(−u), (26)
where

u =
x

2h
(27)
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and

ΦkN,n =


2Tn for N, k even,
1
hUn−1 for N even, k odd,
Vn for N, k odd,
Wn for N odd, k even,

with M =
[
N
2

]
. In the above formulae, Tn, Un, Vn and

Wn are the Chebyshev polynomials of the first, the sec-
ond, the third, and the fourth kind, respectively. They
can be defined by means of the trigonometric substitu-
tion u = cos θ:

Tn(u) = cosnθ,

Un(u) = sin(n+1)θ
sin θ ,

Vn(u) = cos(n+1/2)θ
cos θ/2 ,

Wn(u) = sin(n+1/2)θ
sin θ/2 .

(28)

Moreover, h = 2 cos(πk/N) is the modulus of hybridiza-
tion parameter ck. The characteristic equation leads to
the following rational equation:

RkN (u) =
h

2
, (29)

where

RkN (u) = −
ΦkN,M−1(−u)

ΦkN,M (−u)
. (30)

By choosing again the variable x (27) one gets energy
levels, which enables to solve the eigenproblem of Hamil-
tonians being considered.

6. Conclusions

For any number N of nodes, and two spin deviations,
the dimension of an eigenproblem is equal to the number
of possible vectors tα, with respect to N and k. Simi-
lar to block Hamiltonian matrices, also secular matrices
are of the three-diagonal form. In the theory of recur-
sive sequences, there is a known fact that determinants
of three-diagonal matrices satisfy linear recurrence prob-
lem of a rank 2. This feature is important and helpful
for the diagonalization procedure of block Hamiltonians
considered above. Indeed, characteristic polynomials are
expressed by a linear combination of two adjacent Cheby-
shev polynomials of a given kind, depending on the parity
of N and k.

By solving Eq. (30) one may get exact energy levels.
Furthermore, with the use of inverse Bethe ansatz
method (e.g. [10]) one can obtain the Bethe parameters

which classify eigenstates of the problem. In the case of
bound states on the border of the Brillouin zone, the set
of the Bethe equations is singular, and has no solutions
within the complex numbers. These singularities have
been studied e.g. in papers [13, 15] and [16].

For r > 2 cases, one needs to apply other mathematical
techniques, as the degree of complexity of the problem
being discussed increases together with r, which is a very
interesting question.
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